Applied Statistics in Business and Economics
5th Edition
ISBN: 9780077837303
Author: David Doane, Lori Seward Senior Instructor of Operations Management
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 12.5, Problem 25SE
A regression was performed using data on 32 NFL teams. The variables were Y = current value of team (millions of dollars) and X = total debt held by the team owners (millions of dollars). (a) Write the fitted regression equation. (b) Construct a 95 percent confidence interval for the slope. (c) Perform a right-tailed t test for zero slope at α = .05. State the hypotheses clearly. (d) Use Excel to find the p-value for the t statistic for the slope.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
What is the differed annual expenditures of two families if their annual net incomes are differed by 2000? The computed regression line has a value of a=4.32 and b=2.12.
when a regression is used as a method of predicting dependent variables from one or more independent variables. How are the independent variables different from each other yet related to the dependent variable?
Suppose the athletic director at a university would like to develop a regression model to predict the point differential for games played by the men's basketball team. A point differential is the difference between the final points scored by two competing teams. A positive differential is a win, and a negative differential is a loss. For a random sample of games, the point differential was calculated, along with the number of assists, rebounds, turnovers, and personal fouls. Use the data in the accompanying table attached below to complete parts a through e below. Assume a = 0.05.
a) Using technology, construct a regression model using all three independent variables.
y = __ + (_)x1 + (_)x2 + (_)x3 + (_)x4
b) Test the significance of each independent variable using a= 0.10.
c) interpret the p-value for each independent variable.
d) Construxt a 90% confidence interval for the regression coefficients for each independent variable and interpret the meaning.
e) Using the results from…
Chapter 12 Solutions
Applied Statistics in Business and Economics
Ch. 12.1 - Prob. 1SECh. 12.1 - Prob. 2SECh. 12.1 - Prob. 3SECh. 12.1 - Prob. 4SECh. 12.1 - Prob. 5SECh. 12.1 - Prob. 6SECh. 12.2 - (a) Interpret the slope of the fitted regression...Ch. 12.2 - (a) Interpret the slope of the fitted regression...Ch. 12.2 - Prob. 9SECh. 12.2 - (a) Interpret the slope of the fitted regression...
Ch. 12.2 - (a) Interpret the slope of the fitted regression...Ch. 12.3 - Prob. 12SECh. 12.3 - Prob. 13SECh. 12.3 - The regression equation Credits = 15.4 .07 Work...Ch. 12.3 - Below are fitted regressions for Y = asking price...Ch. 12.3 - Refer back to the regression equation in exercise...Ch. 12.3 - Refer back to the regression equation in exercise...Ch. 12.4 - Instructions for exercises 12.18 and 12.19: (a)...Ch. 12.4 - Instructions for exercises 12.18 and 12.19: (a)...Ch. 12.4 - Instructions for exercises 12.2012.22: (a) Use...Ch. 12.4 - Instructions for exercises 12.2012.22: (a) Use...Ch. 12.4 - Instructions for exercises 12.2012.22: (a) Use...Ch. 12.5 - Instructions for exercises 12.23 and 12.24: (a)...Ch. 12.5 - Prob. 24SECh. 12.5 - A regression was performed using data on 32 NFL...Ch. 12.5 - A regression was performed using data on 16...Ch. 12.6 - Prob. 27SECh. 12.6 - Prob. 28SECh. 12.6 - Instructions for exercises 12.2912.31: (a) Use...Ch. 12.6 - Instructions for exercises 12.2912.31: (a) Use...Ch. 12.6 - Instructions for exercises 12.2912.31: (a) Use...Ch. 12.7 - Refer to the Weekly Earnings data set below. (a)...Ch. 12.7 - Prob. 33SECh. 12.8 - Prob. 34SECh. 12.8 - Prob. 35SECh. 12.9 - An estimated regression for a random sample of...Ch. 12.9 - An estimated regression for a random sample of...Ch. 12.9 - Prob. 38SECh. 12.9 - Prob. 39SECh. 12 - (a) How does correlation analysis differ from...Ch. 12 - (a) What is a simple regression model? (b) State...Ch. 12 - (a) Explain how you fit a regression to an Excel...Ch. 12 - (a) Explain the logic of the ordinary least...Ch. 12 - (a) Why cant we use the sum of the residuals to...Ch. 12 - Prob. 6CRCh. 12 - Prob. 7CRCh. 12 - Prob. 8CRCh. 12 - Prob. 9CRCh. 12 - Prob. 10CRCh. 12 - Prob. 11CRCh. 12 - Prob. 12CRCh. 12 - (a) What is heteroscedasticity? Identify its two...Ch. 12 - (a) What is autocorrelation? Identify two main...Ch. 12 - Prob. 15CRCh. 12 - Prob. 16CRCh. 12 - (a) What is a log transform? (b) What are its...Ch. 12 - Prob. 40CECh. 12 - Prob. 41CECh. 12 - Prob. 42CECh. 12 - Prob. 43CECh. 12 - Prob. 44CECh. 12 - Prob. 45CECh. 12 - Prob. 46CECh. 12 - Prob. 47CECh. 12 - Prob. 48CECh. 12 - Prob. 49CECh. 12 - Prob. 50CECh. 12 - Prob. 51CECh. 12 - Prob. 52CECh. 12 - Prob. 53CECh. 12 - Prob. 54CECh. 12 - Prob. 55CECh. 12 - Prob. 56CECh. 12 - Prob. 57CECh. 12 - Prob. 58CECh. 12 - Prob. 59CECh. 12 - In the following regression, X = weekly pay, Y =...Ch. 12 - Prob. 61CECh. 12 - In the following regression, X = total assets (...Ch. 12 - Prob. 63CECh. 12 - Below are percentages for annual sales growth and...Ch. 12 - Prob. 65CECh. 12 - Prob. 66CECh. 12 - Prob. 67CECh. 12 - Simple regression was employed to establish the...Ch. 12 - Prob. 69CECh. 12 - Prob. 70CECh. 12 - Prob. 71CECh. 12 - Below are revenue and profit (both in billions)...Ch. 12 - Below are fitted regressions based on used vehicle...Ch. 12 - Below are results of a regression of Y = average...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.Similar questions
- What does the y -intercept on the graph of a logistic equation correspond to for a population modeled by that equation?arrow_forwardOlympic Pole Vault The graph in Figure 7 indicates that in recent years the winning Olympic men’s pole vault height has fallen below the value predicted by the regression line in Example 2. This might have occurred because when the pole vault was a new event there was much room for improvement in vaulters’ performances, whereas now even the best training can produce only incremental advances. Let’s see whether concentrating on more recent results gives a better predictor of future records. (a) Use the data in Table 2 (page 176) to complete the table of winning pole vault heights shown in the margin. (Note that we are using x=0 to correspond to the year 1972, where this restricted data set begins.) (b) Find the regression line for the data in part ‚(a). (c) Plot the data and the regression line on the same axes. Does the regression line seem to provide a good model for the data? (d) What does the regression line predict as the winning pole vault height for the 2012 Olympics? Compare this predicted value to the actual 2012 winning height of 5.97 m, as described on page 177. Has this new regression line provided a better prediction than the line in Example 2?arrow_forwardAccountants at the Renong and Khalid Accountant Company believed that several traveling executives were submitting unusually high travel vouchers when they returned from business trips. First, they took a sample of 200 vouchers submitted from the past year. Then they developed the following multiple-regression equation relating expected travel cost (Y) to number of days on the road (X1) and distance travelled (X2) in miles: Y = 90.00 + 48.50X1 + 0.40X2 Here is additional information concerning the regression model: Sb1 = 0.038 Sb2 =0.019 R? = 0.68 Se = 1.63 F-Statistic = 32.123 Durbin-Watson (d) statistic = 0.5436 a) Which of the independent variables appear to be statistically significant (at the 0.05 significant level) in explaining the expected travel cost for accountants? Explain. b) (Mr. Ghazali returns from a 200-mile trip that took him out of town for 5 days), what is the expected amount of his claim. c) What proportion of the total variation in expected travel cost is explained…arrow_forward
- For 40 eruptions of the Old Faithful geyser in Yellowstone National Park, duration times (sec) were recorded along with the heights (ft) of the eruptions. The linear correlation coefficient is r = 0.0915 and the regression equation is = 119 + 0.0331x, where x represents duration time. The mean of the 40 duration times is 245.0 sec and the mean of the 40 heights is 127.2 ft. What is the best predicted height of an eruption with a duration time of 120 min?arrow_forwardA software firm collected data for a sample of 30 computer programmers. A regression analysis can be used to determine if annual salary ($1000s) was related to the years of experience, the score on the firm's programmer aptitude test, and gender. Question: To test the joint significance of the two factors, test score and gender, in Model 1, given a = 5%, the conclusion of the test is Model 1: Standard Intercept experience Test score female Coefficients Error 9.3536 1.4888 0.1851 -2.3613 SST-599.7855, SSE= 75.9380 6.2008 0.1829 0.0757 1.0607 Filters Add a caption.. > +919773521433arrow_forwardCalculate the equation of the regression line and calculate the correlation coefficientarrow_forward
- A football coach is looking for a way to identify players that are "under weight". The coach decides to get data for each player's height (x, in inches) and weight (y, in pounds), then does a linear regression. The results are: y = -56 + 3.6x, r = 0.92 and the standard error is Se = 12.9. Since there is a strong linear correlation the coach, who also majored in Statistics, decides to identify all "outliers" in the data. Obviously, any player whose weight is above the regression line is not "under weight". So the only outliers the coach is interested in are those that are below the regression line. What is the lowest weight possible for a 71 inch player to not be considered "under weight"? Do not round. Submit Questionarrow_forwardSuppose you are estimating a wage regression, where salary is the dependent variable and age, years of education and a dummy variable for male are your independent variables. You are interested in measuring how salary differs between those who have at least a college education with those who have less than a college education. If a person is considered as having a college education when she has more than 12 years of education, how can you measure the difference in salary between college and non-college educated individuals? Select one: a. Multiply coefficient for years of education in original regression by 12 O b. Re-estimate model replacing years of education with a dummy variable for college c. Re-estimate model replacing years of education with a dummy variable for college and one for no college O d. Re-estimate model interacting years of education with a dummy variable for college e. Calculate the difference in predicted salary between an individual with 14 years of education and…arrow_forwardfour pairs of data yield r = 0.942 and the regression equation y-cap = 3x. also, y-bar= 12.75. what is the best predicted value of y for x = 4.6?arrow_forward
- Would I use the regression line to predict Y from X ? And what is the pattern of the scatterplot?arrow_forwardA researcher wants to investigate the influence of the average no. of nights spent per year by the tourists from Japan on the average amount spent by them. Table 3 shows the related data obtained from the Department of Statistics Malaysia website. Table 4 shows a portion of Microsoft Excel output for the regression analysis performed based on the data in Table 3. Table 3: Data on the nights spent by tourists from Japan and amount spent Year Average no. of nights spent Average amount spent (in RM billion) 2010 5.9 1.1 2011 6.1 1.1 2012 6.1 1.4 2013 6.3 1.5 2014 6.4 1.8 2015 6.1 1.6 2016 6.2 1.3 2017 6.3 1.2 2018 6.6 1.7 2019 6.9 2.3 Table 4: Regression analysis Coefficients Standard Error t Stat P-value Intercept B0 1.4555 -3.7583 0.0056 Average no. of nights spent B1 0.2312 4.7934 0.0014 a. Note that the value of B0 and B1 are missing from Table 4.…arrow_forwardFind the correlation coefficient given the estimated regression equation = 25+6x and ² = .8754.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillCollege AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning
- Elementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage LearningAlgebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningFunctions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage Learning
Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill
College Algebra
Algebra
ISBN:9781305115545
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning
Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:9781305658004
Author:Ron Larson
Publisher:Cengage Learning
Algebra and Trigonometry (MindTap Course List)
Algebra
ISBN:9781305071742
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning
Functions and Change: A Modeling Approach to Coll...
Algebra
ISBN:9781337111348
Author:Bruce Crauder, Benny Evans, Alan Noell
Publisher:Cengage Learning
Correlation Vs Regression: Difference Between them with definition & Comparison Chart; Author: Key Differences;https://www.youtube.com/watch?v=Ou2QGSJVd0U;License: Standard YouTube License, CC-BY
Correlation and Regression: Concepts with Illustrative examples; Author: LEARN & APPLY : Lean and Six Sigma;https://www.youtube.com/watch?v=xTpHD5WLuoA;License: Standard YouTube License, CC-BY