DISCRETE MATHEMATICS LOOSELEAF
8th Edition
ISBN: 9781264309689
Author: ROSEN
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 12.3, Problem 7E
Design a circuit that implements majority voting for five individuals.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Consider an election with 301 voters cast for 3 candidates. What is the smallest number of first-place votes that a candidate can receive to win by the Plurality method?
The United States Senate has 2 senators from each of the 50 states. Select all methods that would select a sample of 10 senators at random from the entire Senate.
A:
Take the 10 senators from the 5 largest states.
B:
Take the 10 senators who have served in the Senate the longest.
C:
Place the names of all 100 senators on individual slips of paper placed into a bowl. Thoroughly mix up the slips and then select 10 of them.
D:
Send letters to all 100 senators. Select the 10 that reply back the quickest.
E:
Number the senators from 1 to 100. Use a random number generator to make a list of 10 random integers between 1 and 100 inclusive.
Three people are running for president in a certain school organization. If there are 508 voters, what is the minimum number of votes for someone to win?
Chapter 12 Solutions
DISCRETE MATHEMATICS LOOSELEAF
Ch. 12.1 - Prob. 1ECh. 12.1 - Find the values, if any, of the Boolean...Ch. 12.1 - a) Show that(1.1)+(0.1+0)=1 . b) Translate the...Ch. 12.1 - a) Show that(10)+(10)=1 . b) Translate the...Ch. 12.1 - Use a table to express the values of each of these...Ch. 12.1 - Use a table to express the values of each of these...Ch. 12.1 - Use a 3-cubeQ3to represent each of the Boolean...Ch. 12.1 - Use a 3-cubeQ3to represent each of the Boolean...Ch. 12.1 - What values of the Boolean...Ch. 12.1 - How many different Boolean functions are there of...
Ch. 12.1 - Prove the absorption lawx+xy=x using the other...Ch. 12.1 - Show thatF(x,y,z)=xy+xz+yz has the value 1 if and...Ch. 12.1 - Show thatxy+yz+xz=xy+yz+xz .Ch. 12.1 - 3Exercises 14-23 deal the Boolean algebra {0, 1}...Ch. 12.1 - Exercises 14-23 deal with the Boolean algebra {0,...Ch. 12.1 - Prob. 16ECh. 12.1 - Exercises 14-23 deal with the Boolean algebra {0,...Ch. 12.1 - Prob. 18ECh. 12.1 - Prob. 19ECh. 12.1 - Prob. 20ECh. 12.1 - Prob. 21ECh. 12.1 - Prob. 22ECh. 12.1 - Exercises 4-3 deal with the Boolean algebra {0, 1}...Ch. 12.1 - Prob. 24ECh. 12.1 - Prob. 25ECh. 12.1 - Prob. 26ECh. 12.1 - Prove or disprove these equalities. a)x(yz)=(xy)z...Ch. 12.1 - Find the duals of these Boolean expressions. a)x+y...Ch. 12.1 - Prob. 29ECh. 12.1 - Show that ifFandGare Boolean functions represented...Ch. 12.1 - How many different Boolean functionsF(x,y,z) are...Ch. 12.1 - How many different Boolean functionsF(x,y,z) are...Ch. 12.1 - Show that you obtain De Morgan’s laws for...Ch. 12.1 - Show that you obtain the ab,sorption laws for...Ch. 12.1 - In Exercises 35-42, use the laws in Definition 1...Ch. 12.1 - In Exercises 35-42, use the laws in Definition to...Ch. 12.1 - Prob. 37ECh. 12.1 - Prob. 38ECh. 12.1 - In Exercises 35-42, use the laws in Definition 1...Ch. 12.1 - Prob. 40ECh. 12.1 - Prob. 41ECh. 12.1 - Prob. 42ECh. 12.1 - Prob. 43ECh. 12.2 - Find a Boolean product of the Boolean...Ch. 12.2 - Find the sum of products expansions of these...Ch. 12.2 - Find the sum-of-products expansions of these...Ch. 12.2 - Find the sum-of-products expansions of the Boolean...Ch. 12.2 - Find the sum-of -products expansion of the Boolean...Ch. 12.2 - Find the sum-of-products expansion of the Boolean...Ch. 12.2 - Another way to find a Boolean expression that...Ch. 12.2 - Prob. 8ECh. 12.2 - Prob. 9ECh. 12.2 - Another way to find a Boolean expression that...Ch. 12.2 - Prob. 11ECh. 12.2 - Express each of these Boolean functions using the...Ch. 12.2 - Express each of the Boolean functions in...Ch. 12.2 - Show that a)x=xx . b)xy=(xy)(xy) . c)x+y=(xx)(yy)...Ch. 12.2 - Prob. 15ECh. 12.2 - Show that{} is functionally complete using...Ch. 12.2 - Express each of the Boolean functions in Exercise...Ch. 12.2 - Express each of the Boolean functions in Exercise...Ch. 12.2 - Show that the set of operators{+,} is not...Ch. 12.2 - Are these sets of operators functionally complete?...Ch. 12.3 - In Exercises 1—5 find the output of the given...Ch. 12.3 - In Exercises 1—5 find the output of the given...Ch. 12.3 - In Exercises 1—5 find the output of the given...Ch. 12.3 - In Exercises 1—5 find the output of the given...Ch. 12.3 - In Exercises 1—5 find the output of the given...Ch. 12.3 - Construct circuits from inverters, AND gates, and...Ch. 12.3 - Design a circuit that implements majority voting...Ch. 12.3 - Design a circuit for a light fixture controlled by...Ch. 12.3 - Show how the sum of two five-bit integers can be...Ch. 12.3 - Construct a circuit for a half subtractor using...Ch. 12.3 - Construct a circuit for a full subtractor using...Ch. 12.3 - Use the circuits from Exercises 10 and 11 to find...Ch. 12.3 - Construct a circuit that compares the two-bit...Ch. 12.3 - Construct a circuit that computes the product of...Ch. 12.3 - Use NAND gates to construct circuits with these...Ch. 12.3 - Use NOR gates to construct circuits for the...Ch. 12.3 - Construct a half adder using NAND gates.Ch. 12.3 - Construct a half adder using NOR gates.Ch. 12.3 - Construct a multiplexer using AND gates, OR gates,...Ch. 12.3 - Find the depth of a) the circuit constructed in...Ch. 12.4 - Prob. 1ECh. 12.4 - Find the sum-of-products expansions represented by...Ch. 12.4 - Draw the K-maps of these sum-of-products...Ch. 12.4 - Use a K-map to find a minimal expansion as a...Ch. 12.4 - a) Draw a K-map for a function in three variables....Ch. 12.4 - Use K-maps to find simpler circuits with the same...Ch. 12.4 - Prob. 7ECh. 12.4 - Prob. 8ECh. 12.4 - Construct a K-map for F(x,y,z) =xz + yz+y z. Use...Ch. 12.4 - Draw the 3-cube Q3 and label each vertex with the...Ch. 12.4 - Prob. 11ECh. 12.4 - Use a K-map to find a minimal expansion as a...Ch. 12.4 - a) Draw a K-map for a function in four variables....Ch. 12.4 - Use a K-map to find a minimal expansion as a...Ch. 12.4 - Find the cells in a K-map for Boolean functions...Ch. 12.4 - How many cells in a K-map for Boolean functions...Ch. 12.4 - a) How many cells does a K-map in six variables...Ch. 12.4 - Show that cells in a K-map for Boolean functions...Ch. 12.4 - Which rows and which columns of a 4 x 16 map for...Ch. 12.4 - Prob. 20ECh. 12.4 - Prob. 21ECh. 12.4 - Use the Quine-McCluskey method to simplify the...Ch. 12.4 - Use the Quine—McCluskey method to simp1i’ the...Ch. 12.4 - Prob. 24ECh. 12.4 - Use the Quine—McCluskey method to simplify the...Ch. 12.4 - Prob. 26ECh. 12.4 - Prob. 27ECh. 12.4 - Prob. 28ECh. 12.4 - Prob. 29ECh. 12.4 - Prob. 30ECh. 12.4 - Prob. 31ECh. 12.4 - Prob. 32ECh. 12.4 - show that products of k literals correspond to...Ch. 12 - Define a Boolean function of degreen.Ch. 12 - Prob. 2RQCh. 12 - Prob. 3RQCh. 12 - Prob. 4RQCh. 12 - Prob. 5RQCh. 12 - Prob. 6RQCh. 12 - Explain how to build a circuit for a light...Ch. 12 - Prob. 8RQCh. 12 - Is there a single type of logic gate that can be...Ch. 12 - a) Explain how K-maps can be used to simplify...Ch. 12 - a) Explain how K-maps can be used to simplify...Ch. 12 - a) What is a don’t care condition? b) Explain how...Ch. 12 - a) Explain how to use the Quine-McCluskev method...Ch. 12 - Prob. 1SECh. 12 - Prob. 2SECh. 12 - Prob. 3SECh. 12 - Prob. 4SECh. 12 - Prob. 5SECh. 12 - Prob. 6SECh. 12 - Prob. 7SECh. 12 - Prob. 8SECh. 12 - Prob. 9SECh. 12 - Prob. 10SECh. 12 - Prob. 11SECh. 12 - Prob. 12SECh. 12 - Prob. 13SECh. 12 - Prob. 14SECh. 12 - Prob. 15SECh. 12 - Prob. 16SECh. 12 - How many of the 16 Boolean functions in two...Ch. 12 - Prob. 18SECh. 12 - Prob. 19SECh. 12 - Design a circuit that determines whether three or...Ch. 12 - Prob. 21SECh. 12 - A Boolean function that can be represented by a...Ch. 12 - Prob. 23SECh. 12 - Prob. 24SECh. 12 - Given the values of two Boolean variablesxandy,...Ch. 12 - Prob. 2CPCh. 12 - Prob. 3CPCh. 12 - Prob. 4CPCh. 12 - Prob. 5CPCh. 12 - Prob. 6CPCh. 12 - Prob. 7CPCh. 12 - Prob. 8CPCh. 12 - Prob. 9CPCh. 12 - Given the table of values of a Boolean function,...Ch. 12 - Prob. 11CPCh. 12 - Prob. 12CPCh. 12 - Prob. 1CAECh. 12 - Prob. 2CAECh. 12 - Prob. 3CAECh. 12 - Prob. 4CAECh. 12 - Prob. 5CAECh. 12 - Prob. 6CAECh. 12 - Prob. 7CAECh. 12 - Describe some of the early machines devised to...Ch. 12 - Explain the difference between combinational...Ch. 12 - Prob. 3WPCh. 12 - Prob. 4WPCh. 12 - Find out how logic gates are physically...Ch. 12 - Explain howdependency notationcan be used to...Ch. 12 - Describe how multiplexers are used to build...Ch. 12 - Explain the advantages of using threshold gates to...Ch. 12 - Describe the concept ofhazard-free switching...Ch. 12 - Explain how to use K-maps to minimize functions of...Ch. 12 - Prob. 11WPCh. 12 - Describe what is meant by the functional...
Additional Math Textbook Solutions
Find more solutions based on key concepts
1. How much money is Joe earning when he’s 30?
Pathways To Math Literacy (looseleaf)
For Problems 23-28, write in simpler form, as in Example 4. logbFG
Finite Mathematics for Business, Economics, Life Sciences and Social Sciences
Evaluate the integrals in Exercises 1–46.
1.
University Calculus: Early Transcendentals (4th Edition)
(a) Make a stem-and-leaf plot for these 24 observations on the number of customers who used a down-town CitiBan...
APPLIED STAT.IN BUS.+ECONOMICS
Find E(X) for each of the distributions given in Exercise 2.1-3.
Probability And Statistical Inference (10th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- In a group of 5 freshman, 10 sophomores, 3 juniors, and 2 seniors, how many ways can a president, vice president, and treasurer be elected?arrow_forwardChoosing Officers From a pool of 12 candidates, the offices of president, vice-president, secretary, and treasurer need to be filled. In how many different ways can the offices be filled?arrow_forwardTo allocate annual bonuses, a manager must choose his top four employees and rank them first to fourth. In how many ways can he create the ‘Top- Four” list out of the 32 employees?arrow_forward
- Correct Suppose a software company wants to form a new 36-person committee for a new project. There are 136 employees in the sales department, 103 employees in the development department, and 174 in the design department. Use the Huntington-Hill method to determine the allocation of committee members based on department size.arrow_forwardConsider two weighted voting systems system A has 50 players and system B has 48 players. The number of sequential coalitions for system A divided by the number of sequential coalitions for system B equals?arrow_forwardOut of 333 Institutions, only 45% have participated in a survey. Furthermore, one person did the survey for each of the participating institutions. 8 categories were provided in the survey that participants could select. In total, the survey counted 450,5 votes. Question: How many of these categories were participants required to select when completing the survey?arrow_forward
- Determine whether any of the listed candidates has a majority. Four candidates running for mayor receive votes as follows. Ito: 40,761 Johnson 18,116 Kennedy:9,058 Lieberman 13,587arrow_forwardStudent Engineers Council at an Indiana college has one student representative from each of the five engineering majors (civil, electrical, industrial, materials, and mechanical). Compute how many ways a president, a vice president, and a secretary can be selectedarrow_forwardA chamber of commerce election has 17 candidates for 10 positions. The election consists of two stages. In the first stage, there is an ordered election, with the president being selected first, followed by the vice-president, and then the treasurer, and finally the secretary. In the second stage, the remaining seats are considered 'at large' seats. All the remaining candidates are considered and the 'at large' seats are selected at the same time. How many possible board combinations are there?arrow_forward
- A chamber of commerce election has 18 candidates for 7 positions. The election consists of two stages. In the first stage, there is an ordered election, with the president being selected first, followed by the vice-president, and then the treasurer, and finally the secretary. In the second stage, the remaining seats are considered 'at large' seats. All the remaining candidates are considered and the 'at large' seats are selected at the same time. How many possible board combinations are there? 1,113,840 margin of error +/- 2.5%arrow_forwardA company has four divisions with 560, 1230, 1490, and 1760 people, respectively. A total of 18 IT workers must be allocated to each division according to their size. Complete parts (a) through (d) to find the apportionment using the Hill-Huntington method. Find the standard divisor. Find the standard quota and modified standard quota for each division. Using a modified standard divisor of 275, find the modified quota for each division. Find the geometric mean for each division. Show the rounded quota (according to the Hill-Huntington method) for each division and the final apportionment of IT workers. PLEASE WATCH GRAMMAR, PUNCTUATION, AND HAVE CLEAR FORMATTING. Thank you.arrow_forwardConsider two weighted voting systems: System A (50 players) and System B (48 players).The number of sequential coalitions for System A divided by the number of sequential coalitions for System B equals 2450 50 49 2500arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
Find number of persons in a part with 66 handshakes Combinations; Author: Anil Kumar;https://www.youtube.com/watch?v=33TgLi-wp3E;License: Standard YouTube License, CC-BY
Discrete Math 6.3.1 Permutations and Combinations; Author: Kimberly Brehm;https://www.youtube.com/watch?v=J1m9sB5XZQc;License: Standard YouTube License, CC-BY
How to use permutations and combinations; Author: Mario's Math Tutoring;https://www.youtube.com/watch?v=NEGxh_D7yKU;License: Standard YouTube License, CC-BY
Permutations and Combinations | Counting | Don't Memorise; Author: Don't Memorise;https://www.youtube.com/watch?v=0NAASclUm4k;License: Standard Youtube License
Permutations and Combinations Tutorial; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=XJnIdRXUi7A;License: Standard YouTube License, CC-BY