DISCRETE MATHEMATICS LOOSELEAF
8th Edition
ISBN: 9781264309689
Author: ROSEN
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 12.4, Problem 21E
To determine
To design:
a circuit that implements majority voting of the committee using this relationship between votes.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Rose Par posted Apr 5, 2025 9:01 PM
Subscribe
To: Store Owner
From: Rose Par, Manager
Subject: Decision About Selling Custom Flower Bouquets
Date: April 5, 2025
Our shop, which prides itself on selling handmade gifts and cultural items, has
recently received inquiries from customers about the availability of fresh flower
bouquets for special occasions. This has prompted me to consider whether we
should introduce custom flower bouquets in our shop. We need to decide
whether to start offering this new product. There are three options: provide a
complete selection of custom bouquets for events like birthdays and
anniversaries, start small with just a few ready-made flower arrangements, or do
not add flowers.
There are also three possible outcomes. First, we might see high demand, and the
bouquets could sell quickly. Second, we might have medium demand, with a few
sold each week. Third, there might be low demand, and the flowers may not sell
well, possibly going to waste. These outcomes…
Consider the function f(x) = 2x² - 8x + 3 over the interval 0 ≤ x ≤ 9. Complete the following
steps to find the global (absolute) extrema on the interval. Answer exactly. Separate multiple answers
with a comma.
a. Find the derivative of f (x) = 2x² - 8x+3
f'(x)
b. Find any critical point(s) c within the intervl 0 < x < 9. (Enter as reduced fraction as needed)
c. Evaluate the function at the critical point(s). (Enter as reduced fraction as needed. Enter DNE if
none of the critical points are inside the interval)
f(c)
d. Evaluate the function at the endpoints of the interval 0 ≤ x ≤ 9.
f(0)
f(9)
e. Based on the above results, find the global extrema on the interval and where they occur.
The global maximum value is
at a
The global minimum value is
at x
Determine the values and locations of the global (absolute) and local extrema on the graph given.
Assume the domain is a closed interval and the graph represents the entirety of the function.
3
y
-6-5-4-3
2
1
-1
-2
-3
Separate multiple answers with a comma.
Global maximum: y
Global minimum: y
Local maxima: y
Local minima: y
x
6
at a
at a
at x=
at x=
Chapter 12 Solutions
DISCRETE MATHEMATICS LOOSELEAF
Ch. 12.1 - Prob. 1ECh. 12.1 - Find the values, if any, of the Boolean...Ch. 12.1 - a) Show that(1.1)+(0.1+0)=1 . b) Translate the...Ch. 12.1 - a) Show that(10)+(10)=1 . b) Translate the...Ch. 12.1 - Use a table to express the values of each of these...Ch. 12.1 - Use a table to express the values of each of these...Ch. 12.1 - Use a 3-cubeQ3to represent each of the Boolean...Ch. 12.1 - Use a 3-cubeQ3to represent each of the Boolean...Ch. 12.1 - What values of the Boolean...Ch. 12.1 - How many different Boolean functions are there of...
Ch. 12.1 - Prove the absorption lawx+xy=x using the other...Ch. 12.1 - Show thatF(x,y,z)=xy+xz+yz has the value 1 if and...Ch. 12.1 - Show thatxy+yz+xz=xy+yz+xz .Ch. 12.1 - 3Exercises 14-23 deal the Boolean algebra {0, 1}...Ch. 12.1 - Exercises 14-23 deal with the Boolean algebra {0,...Ch. 12.1 - Prob. 16ECh. 12.1 - Exercises 14-23 deal with the Boolean algebra {0,...Ch. 12.1 - Prob. 18ECh. 12.1 - Prob. 19ECh. 12.1 - Prob. 20ECh. 12.1 - Prob. 21ECh. 12.1 - Prob. 22ECh. 12.1 - Exercises 4-3 deal with the Boolean algebra {0, 1}...Ch. 12.1 - Prob. 24ECh. 12.1 - Prob. 25ECh. 12.1 - Prob. 26ECh. 12.1 - Prove or disprove these equalities. a)x(yz)=(xy)z...Ch. 12.1 - Find the duals of these Boolean expressions. a)x+y...Ch. 12.1 - Prob. 29ECh. 12.1 - Show that ifFandGare Boolean functions represented...Ch. 12.1 - How many different Boolean functionsF(x,y,z) are...Ch. 12.1 - How many different Boolean functionsF(x,y,z) are...Ch. 12.1 - Show that you obtain De Morgan’s laws for...Ch. 12.1 - Show that you obtain the ab,sorption laws for...Ch. 12.1 - In Exercises 35-42, use the laws in Definition 1...Ch. 12.1 - In Exercises 35-42, use the laws in Definition to...Ch. 12.1 - Prob. 37ECh. 12.1 - Prob. 38ECh. 12.1 - In Exercises 35-42, use the laws in Definition 1...Ch. 12.1 - Prob. 40ECh. 12.1 - Prob. 41ECh. 12.1 - Prob. 42ECh. 12.1 - Prob. 43ECh. 12.2 - Find a Boolean product of the Boolean...Ch. 12.2 - Find the sum of products expansions of these...Ch. 12.2 - Find the sum-of-products expansions of these...Ch. 12.2 - Find the sum-of-products expansions of the Boolean...Ch. 12.2 - Find the sum-of -products expansion of the Boolean...Ch. 12.2 - Find the sum-of-products expansion of the Boolean...Ch. 12.2 - Another way to find a Boolean expression that...Ch. 12.2 - Prob. 8ECh. 12.2 - Prob. 9ECh. 12.2 - Another way to find a Boolean expression that...Ch. 12.2 - Prob. 11ECh. 12.2 - Express each of these Boolean functions using the...Ch. 12.2 - Express each of the Boolean functions in...Ch. 12.2 - Show that a)x=xx . b)xy=(xy)(xy) . c)x+y=(xx)(yy)...Ch. 12.2 - Prob. 15ECh. 12.2 - Show that{} is functionally complete using...Ch. 12.2 - Express each of the Boolean functions in Exercise...Ch. 12.2 - Express each of the Boolean functions in Exercise...Ch. 12.2 - Show that the set of operators{+,} is not...Ch. 12.2 - Are these sets of operators functionally complete?...Ch. 12.3 - In Exercises 1—5 find the output of the given...Ch. 12.3 - In Exercises 1—5 find the output of the given...Ch. 12.3 - In Exercises 1—5 find the output of the given...Ch. 12.3 - In Exercises 1—5 find the output of the given...Ch. 12.3 - In Exercises 1—5 find the output of the given...Ch. 12.3 - Construct circuits from inverters, AND gates, and...Ch. 12.3 - Design a circuit that implements majority voting...Ch. 12.3 - Design a circuit for a light fixture controlled by...Ch. 12.3 - Show how the sum of two five-bit integers can be...Ch. 12.3 - Construct a circuit for a half subtractor using...Ch. 12.3 - Construct a circuit for a full subtractor using...Ch. 12.3 - Use the circuits from Exercises 10 and 11 to find...Ch. 12.3 - Construct a circuit that compares the two-bit...Ch. 12.3 - Construct a circuit that computes the product of...Ch. 12.3 - Use NAND gates to construct circuits with these...Ch. 12.3 - Use NOR gates to construct circuits for the...Ch. 12.3 - Construct a half adder using NAND gates.Ch. 12.3 - Construct a half adder using NOR gates.Ch. 12.3 - Construct a multiplexer using AND gates, OR gates,...Ch. 12.3 - Find the depth of a) the circuit constructed in...Ch. 12.4 - Prob. 1ECh. 12.4 - Find the sum-of-products expansions represented by...Ch. 12.4 - Draw the K-maps of these sum-of-products...Ch. 12.4 - Use a K-map to find a minimal expansion as a...Ch. 12.4 - a) Draw a K-map for a function in three variables....Ch. 12.4 - Use K-maps to find simpler circuits with the same...Ch. 12.4 - Prob. 7ECh. 12.4 - Prob. 8ECh. 12.4 - Construct a K-map for F(x,y,z) =xz + yz+y z. Use...Ch. 12.4 - Draw the 3-cube Q3 and label each vertex with the...Ch. 12.4 - Prob. 11ECh. 12.4 - Use a K-map to find a minimal expansion as a...Ch. 12.4 - a) Draw a K-map for a function in four variables....Ch. 12.4 - Use a K-map to find a minimal expansion as a...Ch. 12.4 - Find the cells in a K-map for Boolean functions...Ch. 12.4 - How many cells in a K-map for Boolean functions...Ch. 12.4 - a) How many cells does a K-map in six variables...Ch. 12.4 - Show that cells in a K-map for Boolean functions...Ch. 12.4 - Which rows and which columns of a 4 x 16 map for...Ch. 12.4 - Prob. 20ECh. 12.4 - Prob. 21ECh. 12.4 - Use the Quine-McCluskey method to simplify the...Ch. 12.4 - Use the Quine—McCluskey method to simp1i’ the...Ch. 12.4 - Prob. 24ECh. 12.4 - Use the Quine—McCluskey method to simplify the...Ch. 12.4 - Prob. 26ECh. 12.4 - Prob. 27ECh. 12.4 - Prob. 28ECh. 12.4 - Prob. 29ECh. 12.4 - Prob. 30ECh. 12.4 - Prob. 31ECh. 12.4 - Prob. 32ECh. 12.4 - show that products of k literals correspond to...Ch. 12 - Define a Boolean function of degreen.Ch. 12 - Prob. 2RQCh. 12 - Prob. 3RQCh. 12 - Prob. 4RQCh. 12 - Prob. 5RQCh. 12 - Prob. 6RQCh. 12 - Explain how to build a circuit for a light...Ch. 12 - Prob. 8RQCh. 12 - Is there a single type of logic gate that can be...Ch. 12 - a) Explain how K-maps can be used to simplify...Ch. 12 - a) Explain how K-maps can be used to simplify...Ch. 12 - a) What is a don’t care condition? b) Explain how...Ch. 12 - a) Explain how to use the Quine-McCluskev method...Ch. 12 - Prob. 1SECh. 12 - Prob. 2SECh. 12 - Prob. 3SECh. 12 - Prob. 4SECh. 12 - Prob. 5SECh. 12 - Prob. 6SECh. 12 - Prob. 7SECh. 12 - Prob. 8SECh. 12 - Prob. 9SECh. 12 - Prob. 10SECh. 12 - Prob. 11SECh. 12 - Prob. 12SECh. 12 - Prob. 13SECh. 12 - Prob. 14SECh. 12 - Prob. 15SECh. 12 - Prob. 16SECh. 12 - How many of the 16 Boolean functions in two...Ch. 12 - Prob. 18SECh. 12 - Prob. 19SECh. 12 - Design a circuit that determines whether three or...Ch. 12 - Prob. 21SECh. 12 - A Boolean function that can be represented by a...Ch. 12 - Prob. 23SECh. 12 - Prob. 24SECh. 12 - Given the values of two Boolean variablesxandy,...Ch. 12 - Prob. 2CPCh. 12 - Prob. 3CPCh. 12 - Prob. 4CPCh. 12 - Prob. 5CPCh. 12 - Prob. 6CPCh. 12 - Prob. 7CPCh. 12 - Prob. 8CPCh. 12 - Prob. 9CPCh. 12 - Given the table of values of a Boolean function,...Ch. 12 - Prob. 11CPCh. 12 - Prob. 12CPCh. 12 - Prob. 1CAECh. 12 - Prob. 2CAECh. 12 - Prob. 3CAECh. 12 - Prob. 4CAECh. 12 - Prob. 5CAECh. 12 - Prob. 6CAECh. 12 - Prob. 7CAECh. 12 - Describe some of the early machines devised to...Ch. 12 - Explain the difference between combinational...Ch. 12 - Prob. 3WPCh. 12 - Prob. 4WPCh. 12 - Find out how logic gates are physically...Ch. 12 - Explain howdependency notationcan be used to...Ch. 12 - Describe how multiplexers are used to build...Ch. 12 - Explain the advantages of using threshold gates to...Ch. 12 - Describe the concept ofhazard-free switching...Ch. 12 - Explain how to use K-maps to minimize functions of...Ch. 12 - Prob. 11WPCh. 12 - Describe what is meant by the functional...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- A ball is thrown into the air and its height (in meters) is given by h (t) in seconds. -4.92 + 30t+1, where t is a. After how long does the ball reach its maximum height? Round to 2 decimal places. seconds b. What is the maximum height of the ball? Round to 2 decimal places. metersarrow_forwardDetermine where the absolute and local extrema occur on the graph given. Assume the domain is a closed interval and the graph represents the entirety of the function. 1.5 y 1 0.5 -3 -2 -0.5 -1 -1.5 Separate multiple answers with a comma. Absolute maximum at Absolute minimum at Local maxima at Local minima at a x 2 3 аarrow_forwardA company that produces cell phones has a cost function of C = x² - 1000x + 36100, where C is the cost in dollars and x is the number of cell phones produced (in thousands). How many units of cell phones (in thousands) minimizes this cost function? Round to the nearest whole number, if necessary. thousandarrow_forward
- 11:48 SS retry this question below lll 43% A communications tower is located at the top of a steep hill, as shown. The angle of inclination of the hill is 77°. A guy wire is to be attached to the top of the tower and to the ground, 102 ft downhill from the base of the tower. The angle formed by the guy wire is 9°. Find the length of the cable required for the guy wire. 9° 102 ft 77° NOTE: The picture is NOT drawn to scale. length of guy-wire = ft Enter your answer as a number; your answer should be accurate to 2 decimal places. Question Help: Video Submit Question Jump to Answer |||arrow_forwardHow come that I marked ?arrow_forwardUnder certain conditions, the number of diseased cells N(t) at time t increases at a rate N'(t) = Aekt, where A is the rate of increase at time 0 (in cells per day) and k is a constant. (a) Suppose A = 60, and at 3 days, the cells are growing at a rate of 180 per day. Find a formula for the number of cells after t days, given that 200 cells are present at t = 0. (b) Use your answer from part (a) to find the number of cells present after 8 days. (a) Find a formula for the number of cells, N(t), after t days. N(t) = (Round any numbers in exponents to five decimal places. Round all other numbers to the nearest tenth.)arrow_forward
- The marginal revenue (in thousands of dollars) from the sale of x handheld gaming devices is given by the following function. R'(x) = 4x (x² +26,000) 2 3 (a) Find the total revenue function if the revenue from 125 devices is $17,939. (b) How many devices must be sold for a revenue of at least $50,000? (a) The total revenue function is R(x) = (Round to the nearest integer as needed.) given that the revenue from 125 devices is $17,939.arrow_forwardUse substitution to find the indefinite integral. S 2u √u-4 -du Describe the most appropriate substitution case and the values of u and du. Select the correct choice below and fill in the answer boxes within your choice. A. Substitute u for the quantity in the numerator. Let v = , so that dv = ( ) du. B. Substitute u for the quantity under the root. Let v = u-4, so that dv = (1) du. C. Substitute u for the quantity in the denominator. Let v = Use the substitution to evaluate the integral. so that dv= ' ( du. 2u -du= √√u-4arrow_forwardConsider the state space model X₁ = §Xt−1 + Wt, Yt = AX+Vt, where Xt Є R4 and Y E R². Suppose we know the covariance matrices for Wt and Vt. How many unknown parameters are there in the model?arrow_forward
- Use substitution to find the indefinite integral. Зи u-8 du Describe the most appropriate substitution case and the values of u and du. Select the correct choice below and fill in the answer boxes within your choice. A. Substitute u for the quantity in the numerator. Let v = , so that dv = ( ( ) du. B. Substitute u for the quantity under the root. Let v = u-8, so that dv = (1) du. C. Substitute u for the quantity in the denominator. Let v = so that dv= ( ) du. Use the substitution to evaluate the integral. S Зи -du= u-8arrow_forwardAloha Airlines Flight 007 is flying due east but finds it necessary to detour around a group of thundershowers. The plane 1st turns at a bearing of N 73° E, flies for a while, then 2nd turns to intercept the original path and travels for 50 km at a bearing of S 41° E, back to the original path. As stated the plane traveled 50 km in the 2nd leg of the journey getting back to the path. How far did the plane travel in the 1st leg of the journey?arrow_forwardQuestion 6 Aloha Airlines Flight 007 is flying due east but finds it necessary to detour around a group of thundershowers. The plane 1st turns at a bearing of N 73° E, flies for a while, then 2nd turns to intercept the original path and travels for 50 km at a bearing of S 41° E, back to the original path. As stated the plane traveled 50 km in the 2nd leg of the journey getting back to the path. How far did the plane travel in the 1st leg of the journey? Question Help: Video Submit Question Jump to Answer P3 E E T Q Search L W F1 % R R FS F € t X C V 08 7 47 * B FB Y I E 7 コ コ I Barrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning


Algebra and Trigonometry (MindTap Course List)
Algebra
ISBN:9781305071742
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning
Propositional Logic, Propositional Variables & Compound Propositions; Author: Neso Academy;https://www.youtube.com/watch?v=Ib5njCwNMdk;License: Standard YouTube License, CC-BY
Propositional Logic - Discrete math; Author: Charles Edeki - Math Computer Science Programming;https://www.youtube.com/watch?v=rL_8y2v1Guw;License: Standard YouTube License, CC-BY
DM-12-Propositional Logic-Basics; Author: GATEBOOK VIDEO LECTURES;https://www.youtube.com/watch?v=pzUBrJLIESU;License: Standard Youtube License
Lecture 1 - Propositional Logic; Author: nptelhrd;https://www.youtube.com/watch?v=xlUFkMKSB3Y;License: Standard YouTube License, CC-BY
MFCS unit-1 || Part:1 || JNTU || Well formed formula || propositional calculus || truth tables; Author: Learn with Smily;https://www.youtube.com/watch?v=XV15Q4mCcHc;License: Standard YouTube License, CC-BY