Fundamentals of Differential Equations and Boundary Value Problems
7th Edition
ISBN: 9780321977106
Author: Nagle, R. Kent
Publisher: Pearson Education, Limited
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 12.2, Problem 14E
In Problems 13-20, classify the critical point at the origin and, either by hand or using a computer software package, sketch a phase plane diagram for the given system.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
For the following two-population system, first describe the type of x- and y-populations involved (exponential
or logistic) and the nature of their interaction-competition, cooperation, or predation. Then find and characterize
the system's critical points (as to type and stability). Determine what nonzero x- and y-populations can
coexist. Finally, construct a phase plane portrait that enables you to describe the long-term behavior of the two
populations in terms of their initial populations x(0) and y(0).
dx
dt
dy
dt=xy-4y
= 5xy-10x
CICCES
Describe the type of x- and y-populations involved. Select the correct choice below.
OA. The populations involved are naturally declining populations in competition.
OB. The populations involved are naturally growing populations in cooperation.
OC. The populations involved are naturally declining populations in cooperation.
OD. The populations involved are naturally growing populations in competition.
Interaction of two species of squirrels fiercely competing for the same ecological niche on
an island is described by Lotka-Volterra-Gause equations
dN1
N1(2 – N1 – 2N2) = f(N1, N2),
dt
(1)
dN2
N2(3 – N2 – 3N1) = g(N1, N2),
dt
where N1 = N1(t) and N2 = N2(t) are the population densities of the competing species.
3. The steady-state distribution of temperature on a heated plate can
be modeled by the Laplace equation,
25°C
25°C
If the plate is represented by a
series of nodes (Fig.1), centered
T12
100°C
O°C
finite-divided
differences
can
substituted
for
the
second
T
100°C
0°C
derivatives, which results in a
system of linear algebraic equations
as follows:
75°C
75°C
Use the Gauss-Seidel method to
solve for the temperatures of the
(175
|125
75
25
-1 -1
4
-1
4
nodes
in Fig.1.
Perform
the
0 - 1||T,
2
4
-1|T21
-
computation until ɛ, is less than Es
= 0.5%.
-1 -1
4
[T2
MATH206 week (5)
45
Spring 2021, 20/4/2021
Chapter 12 Solutions
Fundamentals of Differential Equations and Boundary Value Problems
Ch. 12.2 - In Problem 16, classify the critical point at the...Ch. 12.2 - Prob. 2ECh. 12.2 - Prob. 3ECh. 12.2 - Prob. 4ECh. 12.2 - Prob. 5ECh. 12.2 - Prob. 6ECh. 12.2 - Prob. 7ECh. 12.2 - Prob. 8ECh. 12.2 - Prob. 9ECh. 12.2 - In Problem 712, find and classify the critical...
Ch. 12.2 - In Problem 712, find and classify the critical...Ch. 12.2 - In Problem 712, find and classify the critical...Ch. 12.2 - Prob. 13ECh. 12.2 - In Problems 13-20, classify the critical point at...Ch. 12.2 - Prob. 15ECh. 12.2 - Prob. 16ECh. 12.2 - Prob. 17ECh. 12.2 - In Problems 13-20, classify the critical point at...Ch. 12.2 - Prob. 19ECh. 12.2 - Prob. 20ECh. 12.2 - Show that when the system x(t)=ax+by+p,...Ch. 12.2 - Prob. 22ECh. 12.2 - Prob. 23ECh. 12.2 - Prob. 24ECh. 12.2 - Prob. 25ECh. 12.2 - Show when the roots of the characteristic equation...Ch. 12.2 - Prob. 27ECh. 12.3 - In Problems 1 -8, show that the given system is...Ch. 12.3 - Prob. 2ECh. 12.3 - Prob. 3ECh. 12.3 - Prob. 4ECh. 12.3 - Prob. 5ECh. 12.3 - Prob. 6ECh. 12.3 - Prob. 7ECh. 12.3 - Prob. 8ECh. 12.3 - In Problems 9 -12, find all the critical points...Ch. 12.3 - Prob. 10ECh. 12.3 - Prob. 11ECh. 12.3 - In Problems 9 -12, find all the critical points...Ch. 12.3 - In Problems 13-16, convert the second-order...Ch. 12.3 - In Problems 13-16, convert the second-order...Ch. 12.3 - Prob. 15ECh. 12.3 - Prob. 16ECh. 12.3 - Prob. 17ECh. 12.3 - Prob. 18ECh. 12.3 - Prob. 19ECh. 12.3 - Prob. 20ECh. 12.3 - van der Pols Equation. a. Show that van der Pols...Ch. 12.3 - Consider the system dxdt=(+)x+y, dydt=x+(+)y,...Ch. 12.3 - Prob. 23ECh. 12.3 - Show that coexistence occurs in the competing...Ch. 12.3 - When one of the populations in a competing species...Ch. 12.4 - Prob. 1ECh. 12.4 - Prob. 2ECh. 12.4 - Prob. 3ECh. 12.4 - Prob. 4ECh. 12.4 - Prob. 5ECh. 12.4 - Prob. 6ECh. 12.4 - Prob. 7ECh. 12.4 - Prob. 8ECh. 12.4 - Prob. 9ECh. 12.4 - Prob. 10ECh. 12.4 - Prob. 11ECh. 12.4 - Prob. 12ECh. 12.4 - Prob. 13ECh. 12.4 - Prob. 14ECh. 12.4 - Prob. 15ECh. 12.4 - Prob. 16ECh. 12.4 - Prob. 17ECh. 12.4 - Prob. 18ECh. 12.4 - Prob. 19ECh. 12.4 - Prob. 20ECh. 12.4 - Prob. 21ECh. 12.5 - In Problems 1-8, use Lyapunovs direct method to...Ch. 12.5 - In Problems 1-8, use Lyapunovs direct method to...Ch. 12.5 - In Problems 1-8, use Lyapunovs direct method to...Ch. 12.5 - Prob. 4ECh. 12.5 - In Problems 1-8, use Lyapunovs direct method to...Ch. 12.5 - Prob. 6ECh. 12.5 - Prob. 7ECh. 12.5 - Prob. 8ECh. 12.5 - In problem 9-14, use Lyapunovs direct method to...Ch. 12.5 - In problem 9-14, use Lyapunovs direct method to...Ch. 12.5 - Prob. 11ECh. 12.5 - Prob. 12ECh. 12.5 - Prob. 13ECh. 12.5 - Prob. 14ECh. 12.5 - Prob. 15ECh. 12.5 - Prob. 16ECh. 12.5 - Prove that the zero solution for a conservative...Ch. 12.6 - Semistable Limit cycle. For the system...Ch. 12.6 - Prob. 2ECh. 12.6 - Prob. 3ECh. 12.6 - Prob. 4ECh. 12.6 - In Problems 512, either by hand or using a...Ch. 12.6 - Prob. 6ECh. 12.6 - Prob. 7ECh. 12.6 - Prob. 8ECh. 12.6 - In Problems 5-12, either by hand or using computer...Ch. 12.6 - Prob. 10ECh. 12.6 - Prob. 11ECh. 12.6 - In Problems 5-12, either by hand or using computer...Ch. 12.6 - In Problems 13-18, show that the given system or...Ch. 12.6 - In Problems 13-18, show that the given system or...Ch. 12.6 - Prob. 15ECh. 12.6 - In Problems 13-18, show that the given system or...Ch. 12.6 - Prob. 17ECh. 12.6 - Prob. 18ECh. 12.6 - Prob. 19ECh. 12.6 - Prob. 20ECh. 12.6 - Prob. 21ECh. 12.6 - Prob. 22ECh. 12.6 - Prob. 23ECh. 12.6 - Prob. 24ECh. 12.6 - Prob. 25ECh. 12.6 - Prob. 26ECh. 12.6 - Prob. 27ECh. 12.6 - Prob. 28ECh. 12.7 - Prob. 1ECh. 12.7 - Prob. 2ECh. 12.7 - Prob. 3ECh. 12.7 - Prob. 4ECh. 12.7 - Prob. 5ECh. 12.7 - Prob. 6ECh. 12.7 - Prob. 9ECh. 12.7 - Prob. 10ECh. 12.7 - Prob. 11ECh. 12.7 - Prob. 12ECh. 12.7 - Prob. 13ECh. 12.7 - Prob. 14ECh. 12.7 - Prob. 15ECh. 12.7 - Prob. 16ECh. 12.7 - Prob. 17ECh. 12.7 - Prob. 18ECh. 12.8 - Calculate the Jacobian eigenvalues at the critical...Ch. 12.8 - Prob. 2ECh. 12.8 - Prob. 3ECh. 12.8 - Prob. 4ECh. 12.RP - In Problems 1-6, find all the critical points for...Ch. 12.RP - Prob. 2RPCh. 12.RP - Prob. 3RPCh. 12.RP - Prob. 4RPCh. 12.RP - In Problems 1-6, find all the critical points for...Ch. 12.RP - In Problems 1-6, find all the critical points for...Ch. 12.RP - Prob. 7RPCh. 12.RP - In Problems 7 and 8, use the potential plane to...Ch. 12.RP - In Problems 9-12, use Lyapunovs direct method to...Ch. 12.RP - Prob. 10RPCh. 12.RP - In Problems 9-12, use Lyapunovs direct method to...Ch. 12.RP - Prob. 12RPCh. 12.RP - Prob. 13RPCh. 12.RP - In Problem 13 and 14, sketch the phase plane...Ch. 12.RP - In Problems 15 and 16, determine whether the given...Ch. 12.RP - Prob. 16RPCh. 12.RP - In Problems 17 and 18, determine the stability of...Ch. 12.RP - In Problems 17 and 18, determine the stability of...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- Consider the discrete-time dynamical system modeling the concentration of a chemical in a lung. (Note: round all values at the end of the calculations and use 4 decimal places.)ct+1 = (1-p)ct + pβLet V = 2 L, W = 1 L, and β = 6 mmol/LIf c0 = 7 mmol/L, iterate to find the following values:c1 = ____mmol/Lc2 = ____mmol/Lc3 = ____mmol/Lc4 = ____mmol/LFind the equilibrium of this system:c* = ____mmol/Larrow_forwardDenote the owl and wood rat populations at time k by xk Ok Rk and R is the number of rats (in thousands). Suppose Ok and RK satisfy the equations below. Determine the evolution of the dynamical system. (Give a formula for xx.) As time passes, what happens to the sizes of the owl and wood rat populations? The system tends toward what is sometimes called an unstable equilibrium. What might happen to the system if some aspect of the model (such as birth rates or the predation rate) were to change slightly? Ok+ 1 = (0.1)0k + (0.6)RK Rk+1=(-0.15)0k +(1.1)Rk Give a formula for XK- = XK C +0₂ , where k is in months, Ok is the number of owls,arrow_forwardFor each of the phase portraits shown below, give a specific example of the possible general solution for the corresponding 2 x 2linear system, and classify the origin as a type of equilibrium point. Explain your process and answer. (Note: There isn't just one correct answer for each phase portrait. Answers will vary, so make sure you explain your choices.) (a) (b) 0- 大 元 (c)arrow_forward
- Correct solution needed.arrow_forwardProblem 4 Find and classify the critical point of the given linear system. Sketch its phase portrait in the ry phase plane. i = -4x + 2y + 8 I – 2y +1 %3Darrow_forward1. Find the critical points and determine their nature for the system x = 2y + xy, y=x+y. Hence sketch a possible phase diagram.arrow_forward
- 2. Consider the system dP P(1000/Q – P) dt OP Q(20P – Q), dt where P is the price of a single item on the market and Q is the quantity of the item available on the market. Find the equilibrium points of this system. (a) Classify each equilibrium point with respect to its stability, if possible. If a point cannot be readily classified, explain why. (b) Perform a graphical stability analysis to determine what will happen to the levels of P and Q as time increases.arrow_forwardProblem 5: For each system below, find all fixed points and classify the stability. If linear stability analysis fails (i.e. if f'(x) = 0 where x is a fixed point), use a graphical argument to decide stability. (a) = x(1x) (2 - x) i (b) * = e sin x -X (c) = 1x14 i (d) * = e cos x Hint: It may help to consider e and cos x as separate functions rather than as one big function.arrow_forward3. The steady-state distribution of temperature on a heated plate can be modeled by the Laplace equation, 25°C 25°C If the plate is represented by a series of nodes (Fig.1), centered finite-divided T12 100°C differences can substituted for the second T31 100°C derivatives, which results in a system of linear algebraic equations as follows: 75°C 76°C Use the Gauss-Seidel method to solve for the temperatures of the in Fig.1. 0 |T, -1T2 -1T, 4 (175) |125 75 25 -1 -1 4 1 4 - 1 4 -1 -1 11 nodes Perform the 21 computation until ɛ, is less than &s = 0.5%. T, 22 %3Darrow_forward
- Consider the discrete-time dynamical system modeling the concentration of a chemical in a lung. (Note: round all values at the end of the calculations and use 4 decimal places.) ct+1 = (1 - p)ct + pβ Let V = 2 L, W = 1 L, and β = 6 mmol/L If c0 = 7 mmol/L, iterate to find the following values: c1 = ____mmol/Lc2 = ____mmol/Lc3 = ____mmol/Lc4 = ____mmol/Larrow_forwardQuestion 2 Consider the system [exp(2)] x2 y = h(x) = x3 1. With this choice of output, perform the change of coordinates to make the system in feedback linearization form. 2. Is the coordinate transformation global?arrow_forward2. Suppose that W is the population size of Yellowstone wolves and E is the population size elk in Yellowstone. The equations and dE dt = 0.3E-0.4WE dW dt model the interaction between these species. -0.2W +0.1WE If the elk population is zero, what does the second equation tell you? If the wolf population is zero, what does the first equation tell you? • Divide one equation by the other, relating dW and dE.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Intro to the Laplace Transform & Three Examples; Author: Dr. Trefor Bazett;https://www.youtube.com/watch?v=KqokoYr_h1A;License: Standard YouTube License, CC-BY