Fundamentals of Differential Equations and Boundary Value Problems
7th Edition
ISBN: 9780321977106
Author: Nagle, R. Kent
Publisher: Pearson Education, Limited
expand_more
expand_more
format_list_bulleted
Question
Chapter 12.2, Problem 15E
To determine
The type of critical point at the origin and sketch the phase plane diagram for the system.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Consider the example of injection moulding of a rubber component as shown in Figure Q3(b). The process engineer would like to optimise the strength of the component by optimising the following factors: temperature = 190°C and 210°C, pressure = 50 MPa and 100 MPa, and speed of injection = 10 mm/s and 50 mm/s. What type of mathematical model that the engineer can develop if the relationship is linear and no interactions are significant? Write down the general equation that relates the strength of the component with the process factors.
Consider the example of injection moulding of a rubber component as shown in Figure Q3(b). The process engineer would like to optimise the strength of the component by optimising the following factors: temperature = 190°C and 210°C, pressure = 50 MPa and 100 MPa, and speed of injection = 10 mm/s and 50 mm/s. What type of mathematical model that the engineer can develop if the relationship is linear and no interactions are significant? Write down the general equation that relates the strength of the component with the process factors.
3. The steady-state distribution of temperature on a heated plate can
be modeled by the Laplace equation,
25°C
25°C
If the plate is represented by a
series of nodes (Fig.1), centered
T12
100°C
O°C
finite-divided
differences
can
substituted
for
the
second
T
100°C
0°C
derivatives, which results in a
system of linear algebraic equations
as follows:
75°C
75°C
Use the Gauss-Seidel method to
solve for the temperatures of the
(175
|125
75
25
-1 -1
4
-1
4
nodes
in Fig.1.
Perform
the
0 - 1||T,
2
4
-1|T21
-
computation until ɛ, is less than Es
= 0.5%.
-1 -1
4
[T2
MATH206 week (5)
45
Spring 2021, 20/4/2021
Chapter 12 Solutions
Fundamentals of Differential Equations and Boundary Value Problems
Ch. 12.2 - In Problem 16, classify the critical point at the...Ch. 12.2 - Prob. 2ECh. 12.2 - Prob. 3ECh. 12.2 - Prob. 4ECh. 12.2 - Prob. 5ECh. 12.2 - Prob. 6ECh. 12.2 - Prob. 7ECh. 12.2 - Prob. 8ECh. 12.2 - Prob. 9ECh. 12.2 - In Problem 712, find and classify the critical...
Ch. 12.2 - In Problem 712, find and classify the critical...Ch. 12.2 - In Problem 712, find and classify the critical...Ch. 12.2 - Prob. 13ECh. 12.2 - In Problems 13-20, classify the critical point at...Ch. 12.2 - Prob. 15ECh. 12.2 - Prob. 16ECh. 12.2 - Prob. 17ECh. 12.2 - In Problems 13-20, classify the critical point at...Ch. 12.2 - Prob. 19ECh. 12.2 - Prob. 20ECh. 12.2 - Show that when the system x(t)=ax+by+p,...Ch. 12.2 - Prob. 22ECh. 12.2 - Prob. 23ECh. 12.2 - Prob. 24ECh. 12.2 - Prob. 25ECh. 12.2 - Show when the roots of the characteristic equation...Ch. 12.2 - Prob. 27ECh. 12.3 - In Problems 1 -8, show that the given system is...Ch. 12.3 - Prob. 2ECh. 12.3 - Prob. 3ECh. 12.3 - Prob. 4ECh. 12.3 - Prob. 5ECh. 12.3 - Prob. 6ECh. 12.3 - Prob. 7ECh. 12.3 - Prob. 8ECh. 12.3 - In Problems 9 -12, find all the critical points...Ch. 12.3 - Prob. 10ECh. 12.3 - Prob. 11ECh. 12.3 - In Problems 9 -12, find all the critical points...Ch. 12.3 - In Problems 13-16, convert the second-order...Ch. 12.3 - In Problems 13-16, convert the second-order...Ch. 12.3 - Prob. 15ECh. 12.3 - Prob. 16ECh. 12.3 - Prob. 17ECh. 12.3 - Prob. 18ECh. 12.3 - Prob. 19ECh. 12.3 - Prob. 20ECh. 12.3 - van der Pols Equation. a. Show that van der Pols...Ch. 12.3 - Consider the system dxdt=(+)x+y, dydt=x+(+)y,...Ch. 12.3 - Prob. 23ECh. 12.3 - Show that coexistence occurs in the competing...Ch. 12.3 - When one of the populations in a competing species...Ch. 12.4 - Prob. 1ECh. 12.4 - Prob. 2ECh. 12.4 - Prob. 3ECh. 12.4 - Prob. 4ECh. 12.4 - Prob. 5ECh. 12.4 - Prob. 6ECh. 12.4 - Prob. 7ECh. 12.4 - Prob. 8ECh. 12.4 - Prob. 9ECh. 12.4 - Prob. 10ECh. 12.4 - Prob. 11ECh. 12.4 - Prob. 12ECh. 12.4 - Prob. 13ECh. 12.4 - Prob. 14ECh. 12.4 - Prob. 15ECh. 12.4 - Prob. 16ECh. 12.4 - Prob. 17ECh. 12.4 - Prob. 18ECh. 12.4 - Prob. 19ECh. 12.4 - Prob. 20ECh. 12.4 - Prob. 21ECh. 12.5 - In Problems 1-8, use Lyapunovs direct method to...Ch. 12.5 - In Problems 1-8, use Lyapunovs direct method to...Ch. 12.5 - In Problems 1-8, use Lyapunovs direct method to...Ch. 12.5 - Prob. 4ECh. 12.5 - In Problems 1-8, use Lyapunovs direct method to...Ch. 12.5 - Prob. 6ECh. 12.5 - Prob. 7ECh. 12.5 - Prob. 8ECh. 12.5 - In problem 9-14, use Lyapunovs direct method to...Ch. 12.5 - In problem 9-14, use Lyapunovs direct method to...Ch. 12.5 - Prob. 11ECh. 12.5 - Prob. 12ECh. 12.5 - Prob. 13ECh. 12.5 - Prob. 14ECh. 12.5 - Prob. 15ECh. 12.5 - Prob. 16ECh. 12.5 - Prove that the zero solution for a conservative...Ch. 12.6 - Semistable Limit cycle. For the system...Ch. 12.6 - Prob. 2ECh. 12.6 - Prob. 3ECh. 12.6 - Prob. 4ECh. 12.6 - In Problems 512, either by hand or using a...Ch. 12.6 - Prob. 6ECh. 12.6 - Prob. 7ECh. 12.6 - Prob. 8ECh. 12.6 - In Problems 5-12, either by hand or using computer...Ch. 12.6 - Prob. 10ECh. 12.6 - Prob. 11ECh. 12.6 - In Problems 5-12, either by hand or using computer...Ch. 12.6 - In Problems 13-18, show that the given system or...Ch. 12.6 - In Problems 13-18, show that the given system or...Ch. 12.6 - Prob. 15ECh. 12.6 - In Problems 13-18, show that the given system or...Ch. 12.6 - Prob. 17ECh. 12.6 - Prob. 18ECh. 12.6 - Prob. 19ECh. 12.6 - Prob. 20ECh. 12.6 - Prob. 21ECh. 12.6 - Prob. 22ECh. 12.6 - Prob. 23ECh. 12.6 - Prob. 24ECh. 12.6 - Prob. 25ECh. 12.6 - Prob. 26ECh. 12.6 - Prob. 27ECh. 12.6 - Prob. 28ECh. 12.7 - Prob. 1ECh. 12.7 - Prob. 2ECh. 12.7 - Prob. 3ECh. 12.7 - Prob. 4ECh. 12.7 - Prob. 5ECh. 12.7 - Prob. 6ECh. 12.7 - Prob. 9ECh. 12.7 - Prob. 10ECh. 12.7 - Prob. 11ECh. 12.7 - Prob. 12ECh. 12.7 - Prob. 13ECh. 12.7 - Prob. 14ECh. 12.7 - Prob. 15ECh. 12.7 - Prob. 16ECh. 12.7 - Prob. 17ECh. 12.7 - Prob. 18ECh. 12.8 - Calculate the Jacobian eigenvalues at the critical...Ch. 12.8 - Prob. 2ECh. 12.8 - Prob. 3ECh. 12.8 - Prob. 4ECh. 12.RP - In Problems 1-6, find all the critical points for...Ch. 12.RP - Prob. 2RPCh. 12.RP - Prob. 3RPCh. 12.RP - Prob. 4RPCh. 12.RP - In Problems 1-6, find all the critical points for...Ch. 12.RP - In Problems 1-6, find all the critical points for...Ch. 12.RP - Prob. 7RPCh. 12.RP - In Problems 7 and 8, use the potential plane to...Ch. 12.RP - In Problems 9-12, use Lyapunovs direct method to...Ch. 12.RP - Prob. 10RPCh. 12.RP - In Problems 9-12, use Lyapunovs direct method to...Ch. 12.RP - Prob. 12RPCh. 12.RP - Prob. 13RPCh. 12.RP - In Problem 13 and 14, sketch the phase plane...Ch. 12.RP - In Problems 15 and 16, determine whether the given...Ch. 12.RP - Prob. 16RPCh. 12.RP - In Problems 17 and 18, determine the stability of...Ch. 12.RP - In Problems 17 and 18, determine the stability of...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- Interaction of two species of squirrels fiercely competing for the same ecological niche on an island is described by Lotka-Volterra-Gause equations dN1 N1(2 – N1 – 2N2) = f(N1, N2), dt (1) dN2 N2(3 – N2 – 3N1) = g(N1, N2), dt where N1 = N1(t) and N2 = N2(t) are the population densities of the competing species.arrow_forwardDenote the owl and wood rat populations at time k by xk Ok Rk and R is the number of rats (in thousands). Suppose Ok and RK satisfy the equations below. Determine the evolution of the dynamical system. (Give a formula for xx.) As time passes, what happens to the sizes of the owl and wood rat populations? The system tends toward what is sometimes called an unstable equilibrium. What might happen to the system if some aspect of the model (such as birth rates or the predation rate) were to change slightly? Ok+ 1 = (0.1)0k + (0.6)RK Rk+1=(-0.15)0k +(1.1)Rk Give a formula for XK- = XK C +0₂ , where k is in months, Ok is the number of owls,arrow_forward1. Find the critical points and determine their nature for the system x = 2y + xy, y=x+y. Hence sketch a possible phase diagram.arrow_forward
- Correct solution needed.arrow_forwardProblem 5: For each system below, find all fixed points and classify the stability. If linear stability analysis fails (i.e. if f'(x) = 0 where x is a fixed point), use a graphical argument to decide stability. (a) = x(1x) (2 - x) i (b) * = e sin x -X (c) = 1x14 i (d) * = e cos x Hint: It may help to consider e and cos x as separate functions rather than as one big function.arrow_forward2. Consider the system dP P(1000/Q – P) dt OP Q(20P – Q), dt where P is the price of a single item on the market and Q is the quantity of the item available on the market. Find the equilibrium points of this system. (a) Classify each equilibrium point with respect to its stability, if possible. If a point cannot be readily classified, explain why. (b) Perform a graphical stability analysis to determine what will happen to the levels of P and Q as time increases.arrow_forward
- (3) The approximate enrollment, in millions between the years 2009 and 2018 is provided by a linear model Y3D0.2309x+18.35 Where x-0 corresponds to 2009, x=1 to 2010, and so on, and y is in millions of students. Use the model determine projected enrollment for the year 2014. 近arrow_forward7. Find and classify the fixed points of each of the systems of the problem1 and make in detail (isoclines, arrows, etc.) the corresponding phase diagram. corresponding phase diagram. Problem 1. c. Please explain as specific as possible step by step in order to understand how to solve it (do the mathematical operations (derivatives, integrals and differential equations) that correspond). Thank you.arrow_forward7. Find and classify the fixed points of each of the systems of the problem1 and make in detail (isoclines, arrows, etc.) the corresponding phase diagram. corresponding phase diagram. Problem 1. d. Please explain as specific as possible step by step in order to understand how to solve it (do the mathematical operations (derivatives, integrals and differential equations) that correspond). Thank you.arrow_forward
- The Lotka-Volterra model is often used to characterize predator-prey interactions. For example, if R is the population of rabbits (which reproduce autocatlytically), G is the amount of grass available for rabbit food (assumed to be constant), L is the population of Lynxes that feeds on the rabbits, and D represents dead lynxes, the following equations represent the dynamic behavior of the populations of rabbits and lynxes: R+G→ 2R (1) L+R→ 2L (2) (3) Each step is irreversible since, for example, rabbits cannot turn back into grass. a) Write down the differential equations that describe how the populations of rabbits (R) and lynxes (L) change with time. b) Assuming G and all of the rate constants are unity, solve the equations for the evolution of the animal populations with time. Let the initial values of R and L be 20 and 1, respectively. Plot your results and discuss how the two populations are related.arrow_forwardQuestion 2. Solve the problem of time-optimal control to the origin for the system i1 = 2x2, i2 = – -2.x1 + 4u, where |u| < 1.arrow_forwardNeed help with this Linear First Order Mixing Problem. Thank you!arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Intro to the Laplace Transform & Three Examples; Author: Dr. Trefor Bazett;https://www.youtube.com/watch?v=KqokoYr_h1A;License: Standard YouTube License, CC-BY