Fundamentals of Differential Equations and Boundary Value Problems
7th Edition
ISBN: 9780321977106
Author: Nagle, R. Kent
Publisher: Pearson Education, Limited
expand_more
expand_more
format_list_bulleted
Question
Chapter 12.3, Problem 11E
To determine
The critical points and discuss the type and stability of the critical points of the given system,
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
3. Discuss the nature and stability of the simple critical points of the system corresponding to
the following nonlinear equation
+6² +420
6. Judge the observability of the following systems.
(2)
=
0
0
0
1
-4
0
0
0
0 -3 0
0 0 -4
1 0
2
1
-2x
X
X
6.
A firm produces two types of graphics calculators,
x hundreds of type A and y
hundreds of type B per month. The revenue and cost equations (in thousands of Ringgit
Malaysia) for the month are:
R (x,y)=-0.2x² - 0.25y? – 0.2xy + 200x + 160y
С (х, у) — 100 х + 70у+ 4000
a) Determine the number of each type calculators that should be produced to
maximize profit.
b) Determine the maximum profit.
answer: a) x =200 units, y= 100 units
b) RM10,500
Chapter 12 Solutions
Fundamentals of Differential Equations and Boundary Value Problems
Ch. 12.2 - In Problem 16, classify the critical point at the...Ch. 12.2 - Prob. 2ECh. 12.2 - Prob. 3ECh. 12.2 - Prob. 4ECh. 12.2 - Prob. 5ECh. 12.2 - Prob. 6ECh. 12.2 - Prob. 7ECh. 12.2 - Prob. 8ECh. 12.2 - Prob. 9ECh. 12.2 - In Problem 712, find and classify the critical...
Ch. 12.2 - In Problem 712, find and classify the critical...Ch. 12.2 - In Problem 712, find and classify the critical...Ch. 12.2 - Prob. 13ECh. 12.2 - In Problems 13-20, classify the critical point at...Ch. 12.2 - Prob. 15ECh. 12.2 - Prob. 16ECh. 12.2 - Prob. 17ECh. 12.2 - In Problems 13-20, classify the critical point at...Ch. 12.2 - Prob. 19ECh. 12.2 - Prob. 20ECh. 12.2 - Show that when the system x(t)=ax+by+p,...Ch. 12.2 - Prob. 22ECh. 12.2 - Prob. 23ECh. 12.2 - Prob. 24ECh. 12.2 - Prob. 25ECh. 12.2 - Show when the roots of the characteristic equation...Ch. 12.2 - Prob. 27ECh. 12.3 - In Problems 1 -8, show that the given system is...Ch. 12.3 - Prob. 2ECh. 12.3 - Prob. 3ECh. 12.3 - Prob. 4ECh. 12.3 - Prob. 5ECh. 12.3 - Prob. 6ECh. 12.3 - Prob. 7ECh. 12.3 - Prob. 8ECh. 12.3 - In Problems 9 -12, find all the critical points...Ch. 12.3 - Prob. 10ECh. 12.3 - Prob. 11ECh. 12.3 - In Problems 9 -12, find all the critical points...Ch. 12.3 - In Problems 13-16, convert the second-order...Ch. 12.3 - In Problems 13-16, convert the second-order...Ch. 12.3 - Prob. 15ECh. 12.3 - Prob. 16ECh. 12.3 - Prob. 17ECh. 12.3 - Prob. 18ECh. 12.3 - Prob. 19ECh. 12.3 - Prob. 20ECh. 12.3 - van der Pols Equation. a. Show that van der Pols...Ch. 12.3 - Consider the system dxdt=(+)x+y, dydt=x+(+)y,...Ch. 12.3 - Prob. 23ECh. 12.3 - Show that coexistence occurs in the competing...Ch. 12.3 - When one of the populations in a competing species...Ch. 12.4 - Prob. 1ECh. 12.4 - Prob. 2ECh. 12.4 - Prob. 3ECh. 12.4 - Prob. 4ECh. 12.4 - Prob. 5ECh. 12.4 - Prob. 6ECh. 12.4 - Prob. 7ECh. 12.4 - Prob. 8ECh. 12.4 - Prob. 9ECh. 12.4 - Prob. 10ECh. 12.4 - Prob. 11ECh. 12.4 - Prob. 12ECh. 12.4 - Prob. 13ECh. 12.4 - Prob. 14ECh. 12.4 - Prob. 15ECh. 12.4 - Prob. 16ECh. 12.4 - Prob. 17ECh. 12.4 - Prob. 18ECh. 12.4 - Prob. 19ECh. 12.4 - Prob. 20ECh. 12.4 - Prob. 21ECh. 12.5 - In Problems 1-8, use Lyapunovs direct method to...Ch. 12.5 - In Problems 1-8, use Lyapunovs direct method to...Ch. 12.5 - In Problems 1-8, use Lyapunovs direct method to...Ch. 12.5 - Prob. 4ECh. 12.5 - In Problems 1-8, use Lyapunovs direct method to...Ch. 12.5 - Prob. 6ECh. 12.5 - Prob. 7ECh. 12.5 - Prob. 8ECh. 12.5 - In problem 9-14, use Lyapunovs direct method to...Ch. 12.5 - In problem 9-14, use Lyapunovs direct method to...Ch. 12.5 - Prob. 11ECh. 12.5 - Prob. 12ECh. 12.5 - Prob. 13ECh. 12.5 - Prob. 14ECh. 12.5 - Prob. 15ECh. 12.5 - Prob. 16ECh. 12.5 - Prove that the zero solution for a conservative...Ch. 12.6 - Semistable Limit cycle. For the system...Ch. 12.6 - Prob. 2ECh. 12.6 - Prob. 3ECh. 12.6 - Prob. 4ECh. 12.6 - In Problems 512, either by hand or using a...Ch. 12.6 - Prob. 6ECh. 12.6 - Prob. 7ECh. 12.6 - Prob. 8ECh. 12.6 - In Problems 5-12, either by hand or using computer...Ch. 12.6 - Prob. 10ECh. 12.6 - Prob. 11ECh. 12.6 - In Problems 5-12, either by hand or using computer...Ch. 12.6 - In Problems 13-18, show that the given system or...Ch. 12.6 - In Problems 13-18, show that the given system or...Ch. 12.6 - Prob. 15ECh. 12.6 - In Problems 13-18, show that the given system or...Ch. 12.6 - Prob. 17ECh. 12.6 - Prob. 18ECh. 12.6 - Prob. 19ECh. 12.6 - Prob. 20ECh. 12.6 - Prob. 21ECh. 12.6 - Prob. 22ECh. 12.6 - Prob. 23ECh. 12.6 - Prob. 24ECh. 12.6 - Prob. 25ECh. 12.6 - Prob. 26ECh. 12.6 - Prob. 27ECh. 12.6 - Prob. 28ECh. 12.7 - Prob. 1ECh. 12.7 - Prob. 2ECh. 12.7 - Prob. 3ECh. 12.7 - Prob. 4ECh. 12.7 - Prob. 5ECh. 12.7 - Prob. 6ECh. 12.7 - Prob. 9ECh. 12.7 - Prob. 10ECh. 12.7 - Prob. 11ECh. 12.7 - Prob. 12ECh. 12.7 - Prob. 13ECh. 12.7 - Prob. 14ECh. 12.7 - Prob. 15ECh. 12.7 - Prob. 16ECh. 12.7 - Prob. 17ECh. 12.7 - Prob. 18ECh. 12.8 - Calculate the Jacobian eigenvalues at the critical...Ch. 12.8 - Prob. 2ECh. 12.8 - Prob. 3ECh. 12.8 - Prob. 4ECh. 12.RP - In Problems 1-6, find all the critical points for...Ch. 12.RP - Prob. 2RPCh. 12.RP - Prob. 3RPCh. 12.RP - Prob. 4RPCh. 12.RP - In Problems 1-6, find all the critical points for...Ch. 12.RP - In Problems 1-6, find all the critical points for...Ch. 12.RP - Prob. 7RPCh. 12.RP - In Problems 7 and 8, use the potential plane to...Ch. 12.RP - In Problems 9-12, use Lyapunovs direct method to...Ch. 12.RP - Prob. 10RPCh. 12.RP - In Problems 9-12, use Lyapunovs direct method to...Ch. 12.RP - Prob. 12RPCh. 12.RP - Prob. 13RPCh. 12.RP - In Problem 13 and 14, sketch the phase plane...Ch. 12.RP - In Problems 15 and 16, determine whether the given...Ch. 12.RP - Prob. 16RPCh. 12.RP - In Problems 17 and 18, determine the stability of...Ch. 12.RP - In Problems 17 and 18, determine the stability of...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- 23. Consider a simple economy with just two industries: farming and manufacturing. Farming consumes 1/2 of the food and 1/3 of the manufactured goods. Manufacturing consumes 1/2 of the food and 2/3 of the manufactured goods. Assuming the economy is closed and in equilibrium, find the relative outputs of the farming and manufacturing industries.arrow_forward4.arrow_forward(e) None of the above Problem 2. Find a value for h so that the linear system W is consistent. (a) h = 4 (b) h=1/ (c) h = 3/ (d) h=5 (e) None of the above DELL 2x1 + 3x₂ = h 4x1 + 6x₂ = 7arrow_forward
- A system consist of two identical pumps, #1 and #2. If one pump fails, the system will still reoprate. However, because of the added strain, the remaining pump is now more likely to fail than was originally the case. that is, r=(#2 fails | #1 fails) > p(#2 fails)= q. If at least one pump fails by the end of pump design life in 7% of all systems and and both pump fail during that period in only 1%, what's the probability that pump #1 will fail during the pump design life?arrow_forwardFind the solution of the following non-linear system:(Decimal Numbers must be rounded off 8 decimal places and Relative Errors rounded off 4 decimal places) A. Using Bisection Method ( ≤ 0.001%) f(x) = x³-7x² +14x-6, [0,1]arrow_forwardThis paragraph from the text defines the term "controllable". The concept of rank plays an important role in the design of engineering control systems, such as the space shuttle system mentioned in this chapter's introductory example. A state-space model of a control system includes a difference equation of the form xk+1 = Axk+ Buk for k = = 0, 1,... (1) where A is n xn, B is n xm, {x} is a sequence of "state vectors" in R" that describe the state of the system at discrete times, and {u} is a control, or input, sequence. The pair (A, B) is said to be controllable if rank B AB A² B ... A"-¹B] = n (2) The matrix that appears in (2) is called the controllability matrix for the system. If (A, B) is controllable, then the system can be controlled, or driven from the state 0 to any specified state v (in R") in at most n steps, simply by choosing an appropriate control sequence in R" Determine of the following matrix pair is controllable: [0.9 1.0 0 A = 0 -0.9 0 B = , 0 0 0.5]arrow_forward
- A Chemist produces two new types of fertilizers x and y. The profits realized from a kilo of Type x is P50 and from a kilo of Type y is P75. The raw materials from which the fertilizers are made are nitrogen sulfur and potassium which are used in the following quantities: Nitrogen Sulfur Potassium x 4 Kilos 4 Kilos 9 Kilos y 3 Kilos 2 Kilos 1 Kilos The available stocks include 1,500 kilos of nitrogen, 1,200 kilos of potassium and 1,200 kilos of sulfur. Find the amounts of x and y to be produced in order to maximize the profit. Required: 1) Develop the Linear Programming Model 2) Identify the optimum number of x and y to be produced to maximize the profit using the graphical method.arrow_forwardSuppose that you have two products, (Product 1 and 2), which can be produced in one of two plants (Plant 1 and 2). The corresponding unit processing times of each product on each plant, and their unit costs are given. Each plant has a minimum working hour limit, as shown in the table below.Decision variables for the problem are defined as x: number of product 1 produced, and y:number of product 2 produced. Formulated the problem as an LP minimizing total cost and solve it by graphical method. Explicitly show the isocost lines, the intersection of the costraints and the optimal solution on the graph. Then, according to your graph, answer the following questions.(a) What is the shadow price of the Constraint 1(Plant 1 Constraint)? Compute and show on graph.(b) What is the shadow price of the Constraint 2(Plant2 Constraint)? Compute and show on graph.(c) What is the reduced cost of x? (How much should the objective function coefficient of x reduced from 6 for it to become nonzero in the…arrow_forward4arrow_forward
- Problem. Compute the general solution of the following 3 x 3 linear system: -2 3 0 dY *- (1 ÷ 9x ---- () = 3 -2 1 Y, where . dt 0 0 -1 (Hint: Mimic the computation of the general solution of a 2 x 2 linear system!)arrow_forwardA system consists of two identical pumps, #1 and #2. If one pump fails, the system will still operate. However, because of the added strain, the remaining pump is now more likely to fail than was originally the case. That is, r = P(#2 fails | #1 fails) > P(#2 fails) = q. If at least one pump fails by the end of the pump design life in 14% of all systems and both pumps fail during that period in only 2%, what is the probability that pump #1 will fail during the pump design life?arrow_forwardThe table below shows the projected values (in millions of dollars) of hardback college textbooks sold in the United States for the years 2007 to 2009. Year Value 2007 4412 C = 2008 4471 2009 4556 (a) Create a system of linear equations for the data to fit the curve y = at² + bt + c, where t is the year and t = 7 corresponds to 2007, and y is the value of the textbooks. = 4412 = 4471 = 4556 (b) Use Cramer's Rule to solve your system. a = b =arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra for College StudentsAlgebraISBN:9781285195780Author:Jerome E. Kaufmann, Karen L. SchwittersPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
Algebra for College Students
Algebra
ISBN:9781285195780
Author:Jerome E. Kaufmann, Karen L. Schwitters
Publisher:Cengage Learning
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Lecture 46: Eigenvalues & Eigenvectors; Author: IIT Kharagpur July 2018;https://www.youtube.com/watch?v=h5urBuE4Xhg;License: Standard YouTube License, CC-BY
What is an Eigenvector?; Author: LeiosOS;https://www.youtube.com/watch?v=ue3yoeZvt8E;License: Standard YouTube License, CC-BY