Physics of Everyday Phenomena
9th Edition
ISBN: 9781259894008
Author: W. Thomas Griffith, Juliet Brosing Professor
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 12, Problem 4SP
Suppose that four equal positive charges are located at the corners of a square, as in the diagram.
a. Using small arrows, indicate the direction of the electric field at each of the labeled points.
b. Would the magnitude of the electric field be equal to zero at any of the labeled points? Explain.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 12 Solutions
Physics of Everyday Phenomena
Ch. 12 - When two different materials are rubbed together,...Ch. 12 - Two pith balls are both charged by contact with a...Ch. 12 - When a glass rod is rubbed by a nylon cloth, which...Ch. 12 - Two pith balls are charged by touching one to a...Ch. 12 - Do the two metal-foil leaves of an electroscope...Ch. 12 - If you charge an electroscope with a plastic rod...Ch. 12 - When you comb your hair with a plastic comb, what...Ch. 12 - Describe how Benjamin Franklins single-fluid model...Ch. 12 - If you touch the metal ball of a charged...Ch. 12 - If you touch the ball of a charged electroscope...
Ch. 12 - When a metal ball is charged by induction using a...Ch. 12 - If, when charging by induction, you remove the...Ch. 12 - Will bits of paper be attracted to a charged rod...Ch. 12 - Why are pith balls initially attracted to a...Ch. 12 - Are electrostatic precipitators (see everyday...Ch. 12 - Can the pollutant carbon dioxide be readily...Ch. 12 - Can scrubbers (see everyday phenomenon box 12.1)...Ch. 12 - Is the concept of torque involved in the operation...Ch. 12 - If you had several identical metal balls mounted...Ch. 12 - If the distance between two charged objects is...Ch. 12 - If two charges are both doubled in magnitude...Ch. 12 - Can both the electrostatic force and the...Ch. 12 - Two charges, of equal magnitude but opposite sign,...Ch. 12 - Is it possible for an electric field to exist at...Ch. 12 - If we change the negative charge in the diagram...Ch. 12 - Three equal positive charges are located at the...Ch. 12 - Is the electric field produced by a single...Ch. 12 - If we move a positive charge toward a negative...Ch. 12 - Prob. 29CQCh. 12 - If a negative charge is moved in the same...Ch. 12 - Prob. 31CQCh. 12 - Is electric potential the same as electric...Ch. 12 - Prob. 33CQCh. 12 - Prob. 34CQCh. 12 - Would you be more likely to be struck by lightning...Ch. 12 - During a thunderstorm, why can a much greater flow...Ch. 12 - If in a typical thundercloud the bottom of the...Ch. 12 - Which is better during a thunderstorm: being in...Ch. 12 - Prob. 39CQCh. 12 - An electron has a charge of 1.6 1019 C. How many...Ch. 12 - Two identical brass balls mounted on wooden posts...Ch. 12 - Two identical steel balls mounted on wooden posts...Ch. 12 - Two charged particles exert an electrostatic force...Ch. 12 - Two charged particles exert an electrostatic force...Ch. 12 - Two negative charges, each of magnitude 5 106 C,...Ch. 12 - A charge of +3 106 C is located 21 cm from a...Ch. 12 - An electron and a proton have charges of an equal...Ch. 12 - A uniform electric field is directed upward and...Ch. 12 - A test charge of +12 106 C experiences a downward...Ch. 12 - A +3.4 106 C test charge experiences forces from...Ch. 12 - A charge of 5.8 106 C is placed at a point in...Ch. 12 - A charge of +0.18 C is moved from a position where...Ch. 12 - Prob. 14ECh. 12 - The potential energy of a +8 106 C charge...Ch. 12 - The electric potential increases from 52 V to 367...Ch. 12 - Three positive charges are located along a line,...Ch. 12 - Suppose that two equal positive charges lie near...Ch. 12 - Suppose that one of the two charges in synthesis...Ch. 12 - Suppose that four equal positive charges are...Ch. 12 - Suppose that the top plate of a parallel-plate...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Earth has a net charge that produces an electric field of approximately 150 N/C downward at its surface. (a) What is the magnitude and sign of the excess charge, noting the electric field of a conducting sphere is equivalent to a point charge at its center? (b) What acceleration will the field produce on a free electron near Earth’s surface? (c) What mass object with a single extra electron will have its weight supported by this field?arrow_forward(a) What is the electric field 5.00 m from the center of the terminal of a Van de Graaff with a 3.00 mC charge, noting that the field is equivalent to that of a point charge at the center of the terminal? (b) At this distance, what force does the field exert on a 2.00 C charge on the Van de Graaff’s belt?arrow_forward(a) What is the electric field 5.00 m from die center of the terminal of a Van de Graaff with a 3.00-mC charge, noting that the field is equivalent to that of a point charge at the center of the terminal? (b) At this distance, what force does the field exert on a 2.00C charge on the Van de Graaff’s belt?arrow_forward
- A charged rod is placed in the center along the axis of a neutral metal cylinder (Fig. P25.57). The rod has positive charge uniformly distributed. (Ignore the ends.) a. Find expressions for the electric fields in all regions: r a, a r b, b r c, and r c. b. Plot your expressions on one graph. Is the electric field continuous or discontinuous? Explain.arrow_forward(a) Determine the electric field strength at a point 1.00 cm to the left of the middle charge shown in Figure P15.10. (b) If a charge of 2.00 C is placed at this point, what are the magnitude and direction of the force on it?arrow_forwardThree equal positive charges q are at the comers of an equilateral triangle of side a as shown in Figure P19.28. Assume the three charges together create an electric field. (a) Sketch the field lines in the plane of the charges. (b) Find the location of one point (other than ) where the electric field is zero. What are (c) the magnitude and (d) the direction of the electric field at P due to the two charges at the base?arrow_forward
- A hollow, metallic, spherical shell has exterior radius 0.750 m, carries no net charge, and is supported on an insulating stand. The electric field everywhere just outside its surface is 890 N/C radially toward the center of the sphere. Explain what you can conclude about (a) the amount of charge on the exterior surface of the sphere and the distribution of this charge, (b) the amount of charge on the interior surface of the sphere and its distribution, and (c) the amount of charge inside the shell and its distribution.arrow_forward(a) Find the magnitude and direction of the electric field at the position of the 2.00 C charge in Figure P13.13. (b) How would the electric field at that point be affected if the charge there were doubled? Would the magnitude of the electric force be affected?arrow_forward(a) Find the direction and magnitude of an electric field that exerts a 4.801017 N westward force on an electron (b) What magnitude and direction force does this field exert on a proton?arrow_forward
- For each sketch of electric field lines in Figure P24.8, compare the magnitude of the electric field in region A to the magnitude of the electric field in region B. FIGURE P24.8arrow_forwardThe electric field at a point on the perpendicular bisector of a charged rod was calculated as the first example of a continuous charge distribution, resulting in Equation 24.15:E=kQy12+y2j a. Find an expression for the electric field when the rod is infinitely long. b. An infinitely long rod with uniform linear charge density also contains an infinite amount of charge. Explain why this still produces an electric field near the rod that is finite.arrow_forwardTwo small spheres of mass m are suspended from strings of length that are connected at a common point. One sphere has charge Q and the other charge 2Q. The strings make angles 1 and 2 with the vertical. (a) Explain how 1, and 2 are related. (b) Assume 1 and 2 are small. Show that the distance r between the spheres is approximately r=(4keQ2mg)1/3arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY