Interpretation:
Whether the concentration of lead in the given sample of water can be decreased by boiling, or not, is to be explained.
Concept Introduction:
Water gets polluted due to the presence of various biological and chemical contaminants in it. Biological contaminants include microorganisms such as Giardia, Legionella while chemical contaminants are mercury, lead, benzene, trichloroethylene etc. Both these render water unfit for consumption by human beings and animals, if the contaminant exceeds a certain limit, termed as Maximum Contaminant Limit.
The concentration of a contaminant is reported as the mass of contaminant (in milligrams) present in one liter of water.
Hard water is a solution of calcium and magnesium salts in water. Presence of calcium and magnesium ions makes water hard and renders it unusable for various purposes, such as cleaning clothes and utensils, bathing and in water heaters etc.
Boiling of water cannot get rid of contaminants because this decreases the total volume of the sample of water but the mass of contaminant remains same. Moreover, the concentration of contaminant increases.
Want to see the full answer?
Check out a sample textbook solutionChapter 12 Solutions
Chemistry In Focus
- Maple syrup sap is 3% sugar (sucrose) and 97% water bymass. Maple syrup is produced by heating the sap toevaporate a certain amount of the water. (a) Describe what happens to the composition and boilingpoint of the solution as evaporation takes place. (b) A rule of thumb among maple syrup producers is thatthe finished syrup should boil about 4 C higher than theoriginal sap being boiled. Explain the chemistry behindthis guideline. (c) If the finished product boils 4 C higher than the originalsap, calculate the concentration of sugar in the finalproduct. Assume that sugar is the only solute and theoperation is done at 1 atm pressure.arrow_forwardCooking A cook prepares a solution for boiling by adding12.5 g of NaCl to a pot holding 0.750 L of water. Atwhat temperature should the solution in the pot boil?Use Table 14.5 for needed data.arrow_forwardThe solubility of lead nitrate at 100C is 140.0 g/100 g water. A solution at 100C consists of 57.0 g of lead nitrate in 64.0 g of water. When the solution is cooled 10C to 25.0 g of lead nitrate crystallize out. What is the solubility of lead nitrate in g/100 g water at 10C?arrow_forward
- What mass of a 4.00% NaOH solution by mass contains 15.0 g of NaOH?arrow_forwardIn your own words, explain why (a) seawater has a lower freezing point than fresh water. (b) salt is added to the ice in an ice cream maker to freeze the ice cream faster.arrow_forwardAre changes in state physical or chemical changes? Explain. What type of forces must be overcome to melt or vaporize a substance (are these forces intramolecular or intermolecular)? Define the molar heat of fusion and molar heat of vaporization. Why is the molar heat of vaporization of water so much larger than its molar heat of fusion? Why does the boiling point of a liquid vary with altitude?arrow_forward
- n oil spill spreads out on the surface of water, rather than dissolving in the water. Explain why.arrow_forwardDissolving 3.0 g of CaCl2(s) in 150.0 g of water in a calorimeter (Figure 5.12) at 22.4 °C causes the temperature to rise to 25.8 °C. What is the approximate amount of heat involved in the dissolution, assuming the specific heat of the resulting solution is 4.18 J/g °C? Is the reaction exothermic or endothermic?arrow_forwardConsider two hypothetical pure substances, AB(s) and XY(s). When equal molar amounts of these substances are placed in separate 500-mL samples of water, they undergo the following reactions: AB(s)A+(aq)+B(aq)XY(s)XY(aq) a Which solution would you expect to have the lower boiling point? Why? b Would you expect the vapor pressures of the two solutions to be equal? If not, which one would you expect to have the higher vapor pressure? c Describe a procedure that would make the two solutions have the same boiling point. d If you took 250 mL of the AB(aq) solution prepared above, would it have the same boiling point as the original solution? Be sure to explain your answer. e The container of XY(aq) is left out on the bench top for several days, which allows some of the water to evaporate from the solution. How would the melting point of this solution compare to the melting point of the original solution?arrow_forward
- If a substance has a positive enthalpy of solution, which would likely cause more of it to dissolve, hot solvent or cold solvent? Explain.arrow_forwardStarch contains CC, CH, CO, and OH bonds. Hydrocarbons have only CC and CH bonds. Both starch and hydrocarbons can form colloidal dispersions in water. Which dispersion is classified as hydrophobic? Which is hydrophilic? Explain briefly.arrow_forwardEqual numbers of moles of two soluble, substances, substance A and substance B, are placed into separate 1.0-L samples of water. a The water samples are cooled. Sample A freezes at 0.50C, and Sample B freezes at l.00C. Explain how the solutions can have different freezing points. b You pour 500 mL of the solution containing substance B into a different beaker. How would the freezing point of this 500-mL portion of solution B compare to the freezing point of the 1.0-L sample of solution A? c Calculate the molality of the solutions of A and B. Assume that i = 1 for substance A. d If you were to add an additional 1.0 kg of water to solution B, what would be the new freezing point of the solution? Try to write an answer to this question without using a mathematical formula. e What concentration (molality) of substances A and B would result in both solutions having a freezing point of 0.25C? f Compare the boiling points, vapor pressure, and osmotic pressure of the original solutions of A and B. Dont perform the calculations; just state which is the greater in each ease.arrow_forward
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning