Chemistry In Focus
Chemistry In Focus
7th Edition
ISBN: 9781337399692
Author: Tro, Nivaldo J.
Publisher: Cengage Learning,
bartleby

Concept explainers

Question
Book Icon
Chapter 12, Problem 28E
Interpretation Introduction

Interpretation:

The molecule which exists as solid at room temperature is to be determined out of the four given options.

Concept Introduction:

A hydrocarbon is organic compound consisting entirely of hydrogen and carbon.

Butane and hexane both are hydrocarbon. Butane is a four-carbon alkane and hexane contains six carbon atoms.

The temperature at which the vapour pressure of the liquid is equal to the pressure exerted on the liquid by the surrounding atmosphere is called boiling point.

Boiling point of a molecule depends on the intermolecular forces and thermal energy.

Intermolecular forces are of two types: dispersion forces and dipole forces.

Dispersion forces are possessed by all the atoms or molecules, which depend on the molar mass.

Dipole forces exist between polar molecules, which depend on the polarity of the molecules.

Intermolecular forces keep the molecules together. Greater the intermolecular force, higher is the boiling point.

All atoms and molecules possess dispersion forces which depend upon their molar mass.

Polar molecules possess dipole forces between them which depend upon the polarity of the molecules.

A molecular formula consists of the chemical symbols for the constituent elements followed by numeric subscripts describing the number of atoms of each element present in the molecule.

Dispersion forces are weak intermolecular forces and are considered van der waals forces.

Temporary dipoles can occur in non-polar molecules when the electrons that constantly orbit the nucleus occupy a similar location by chance.

Higher the molar mass, higher is the magnitude of the dispersion forces, and hence, higher is the boiling point.

Molecules which have lower molar masses have lower dispersion forces because dispersion force is directly proportional to the molar mass.

Molecules which have higher molar masses have higher dispersion forces.

Blurred answer
Students have asked these similar questions
Given the reaction: A(aq) + B(aq) ⇌ 2C(aq) + D(aq). 2.00 moles of each reactant were dissolved into 1.00 literof water. The reaction reached equilibrium, and at equilibrium the concentration of A was 1.60 M.A) Calculate the equilibrium concentrations for each substance. B) Write the equilibrium constant expression. C) Calculate the value for the equilibrium constant, Keq.
1) Draw the structures of D-lysine and L-lysine and assign R/S configuration (showing your workings). 2) Draw the predominant ionisation forms of the free amino acid lysine, at pH 1.0, 8.0, and 11.0. pKa values: 2.2 (-COOH), 9.0 (α-NH3+), 10.5 (side-chain). 3) Calculate (showing your workings) the % of the different ionized species that are present in a 1.00 M solution of L-proline at pH = 10.0. pKa values: 1.95 (- COOH), 10.64 (α-NH3*). 4) a) Draw the tripeptide Tyr-Pro-Lys once with a trans peptide bond between Tyr and Pro and once with a cis peptide bond between Tyr and Pro. b) The electrospray ionization mass spectrum (ESI-MS) of the tripeptide you designed in part (a) shows peaks indicative of mono-protonation and di- protonation of the tripeptide. At what values of m/z would these peaks be expected (no fragmentation)? Briefly explain your answer (showing your workings). 5) How could the sequence of Ala-Met-Thr be distinguished from that of Thr-Ala- Met by tandem ESI-MS-MS?…
LABORATORY REPORT FORM Part I. Determination of the Formula of a Known Hydrate 1. Mass of empty evaporating dish 3. Mass of hydrate Using subtraction or mass by difference, find the mass of the hydrate 76.96 -75.40 75.40g 76.968 1.568 01.56 76.90 g 2. Mass of evaporating dish + hydrate 4. Mass of evaporating dish + hydrate (after heating) First 76.98 g Third 76.66g Second Fourth (if necessary) 76.60g 5. Mass of anhydrate 6. Mass of water lost by the hydrate 7. Percent of water of hydration (Show Calculations) 8. Moles of water (Show Calculations) mol mass of water = MM of water (g/m) 9. Moles of anhydrate (Show Calculations) 10. Ratio of moles of water to moles of anhydrate 11 F(Show Calculations) 11. Formula of hydrate - Mass of water (g) x 100 % water hydration g g % Mass of hydrate (9) x IC % = (Mass of hydrate- mass of an) mass of hydrate (g) % = (1.569- × 100= mol 1.569 mol Mol Mass of anhydrate/MM of anhydrate 12. What was the color of the hydrate? blue What was the color of the…

Chapter 12 Solutions

Chemistry In Focus

Ch. 12 - A representation of liquid water is shown below....Ch. 12 - Prob. 3SCCh. 12 - Prob. 4SCCh. 12 - Prob. 1ECh. 12 - Prob. 2ECh. 12 - Prob. 3ECh. 12 - Prob. 4ECh. 12 - Prob. 5ECh. 12 - Prob. 6ECh. 12 - Prob. 7ECh. 12 - Prob. 8ECh. 12 - Prob. 9ECh. 12 - Prob. 10ECh. 12 - Why does sweating cool the human body?Ch. 12 - Prob. 12ECh. 12 - Prob. 13ECh. 12 - Prob. 14ECh. 12 - Explain the hydrologic cycle.Ch. 12 - Prob. 16ECh. 12 - Prob. 17ECh. 12 - How does a water softener work?Ch. 12 - Prob. 19ECh. 12 - Prob. 20ECh. 12 - Prob. 21ECh. 12 - What is the SDWA?Ch. 12 - Prob. 23ECh. 12 - Prob. 24ECh. 12 - Prob. 25ECh. 12 - Explain the concerns that groups like the EWG or...Ch. 12 - Prob. 27ECh. 12 - Prob. 28ECh. 12 - Which compound would you expect to have the...Ch. 12 - Which compound would you expect to have the...Ch. 12 - Prob. 31ECh. 12 - Prob. 32ECh. 12 - Classify each molecule as polar or nonpolar:...Ch. 12 - Classify each molecule as polar or nonpolar:...Ch. 12 - Prob. 35ECh. 12 - Prob. 36ECh. 12 - Prob. 37ECh. 12 - Prob. 38ECh. 12 - How many grams of sucrose (C12H22O11) are present...Ch. 12 - How many grams of glucose (C6H12O6) are present in...Ch. 12 - Prob. 41ECh. 12 - How many grams of NaF are present in 4.5 L of a...Ch. 12 - A 250-g sample of hard water contains...Ch. 12 - Prob. 44ECh. 12 - Prob. 45ECh. 12 - Prob. 46ECh. 12 - Prob. 47ECh. 12 - Prob. 48ECh. 12 - Prob. 49ECh. 12 - Prob. 50ECh. 12 - Prob. 51ECh. 12 - Prob. 52ECh. 12 - Prob. 53ECh. 12 - Prob. 54ECh. 12 - Prob. 55ECh. 12 - Prob. 56ECh. 12 - Prob. 57ECh. 12 - Prob. 58E
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry for Today: General, Organic, and Bioche...
Chemistry
ISBN:9781305960060
Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. Hansen
Publisher:Cengage Learning
Text book image
Introductory Chemistry For Today
Chemistry
ISBN:9781285644561
Author:Seager
Publisher:Cengage
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Introductory Chemistry: A Foundation
Chemistry
ISBN:9781337399425
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
World of Chemistry, 3rd edition
Chemistry
ISBN:9781133109655
Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCoste
Publisher:Brooks / Cole / Cengage Learning
Text book image
Chemistry In Focus
Chemistry
ISBN:9781337399692
Author:Tro, Nivaldo J.
Publisher:Cengage Learning,