
Concept explainers
A balanced, positive-sequence wye-connected source has Van = 240
- (a) Calculate the line currents if ZAB = 40 + j15 Ω, ZBC = 60 Ω, ZCA = 18 − jl2 Ω.
- (b) Find the complex power supplied by the source.
a.

Calculate the line currents for the described circuit using PSpice.
Answer to Problem 48P
The value for the line currents
Explanation of Solution
Given data:
The phase voltage is
The transmission line impedance is
The value of the impedances
Formula used:
Write the formulae for the conversion of delta connected impedances to star connected impedances.
Here,
Write the expression for reactance of the inductor.
Here,
Write the expression for reactance of the capacitor.
Here,
Calculation:
The given unbalanced delta connected load is shown in Figure 1.
Substitute
Substitute
Substitute
The transformed circuit is shown in Figure 2.
The given balanced wye-connected source supplies the unbalanced delta connected load is shown in Figure 3.
Let us assume that the value of the angular frequency,
Calculate the frequency as follows.
Substitute
Substitute
Substitute
Substitute
The time domain representation of Figure 3 is shown in Figure 4.
PSpice Simulation:
Draw Figure 4 in PSpice as shown in Figure 5.
Provide the simulation setting as shown in Figure 6.
The obtained results are given below.
FREQ IM(V_PRINT1) IP(V_PRINT1)
1.592E-01 2.492E+01 -6.124E+00
FREQ IM(V_PRINT2) IP(V_PRINT2)
1.592E-01 9.723E+00 -1.442E+02
FREQ IM(V_PRINT3) IP(V_PRINT3)
1.592E-01 2.094E+01 1.365E+02
The obtained line currents are given below.
Conclusion:
Thus, the value for the line currents
b.

Calculate the total complex power supplied by the source.
Answer to Problem 48P
The total complex power supplied by the source is
Explanation of Solution
Calculation:
Write the expression for complex power delivered by source
Substitute
Write the expression for complex power delivered by source
Substitute
Write the expression for complex power delivered by source
Substitute
Write the expression for total complex power supplied by the source.
Substitute
Conclusion:
Thus, the total complex power supplied by the source is
Want to see more full solutions like this?
Chapter 12 Solutions
EBK FUNDAMENTALS OF ELECTRIC CIRCUITS
Additional Engineering Textbook Solutions
Modern Database Management
Vector Mechanics for Engineers: Statics and Dynamics
Mechanics of Materials (10th Edition)
Degarmo's Materials And Processes In Manufacturing
Java How to Program, Early Objects (11th Edition) (Deitel: How to Program)
Starting Out With Visual Basic (8th Edition)
- 1. Figure 2 shows a filter. Transpose the filter by first converting it into a DFG and redraw the transposed filter + (✗ D + × y(n) ✗ (☑ (x) (+ 4D (×→+) D u(n) ✗ (☑ + Figure 2: Filter structure. D Darrow_forwardDesign a 4-bit circuit with 2 outputs A and B. A is 1 if the input is divisible by 2 and B is 1 if the input is divisible by 3. Simplify A and B and implement the circuit.a. Draw KMAP for A and B and simplify them and then draw circuitarrow_forwardQuestion 1. Design a 4-bit combinational circuit for a 2’s complementer. The circuit generates at the output the 2’s complement of the input binary numbers.a) Complete the following truth table. A, B, C, D indicate the input binary number to be complement- ed using 2’s complement and W, X, Y, Z represent the output 2’s complement of the input binary number. The variable D is the least significant bit and A is the most significant bit of the binary number.b) Simplify the Boolean function W in its Sum-of-Products (SOP) form using a K-Map (you do not have to show the circuit) and provide its simplified Boolean expression.c) Show that the Boolean function W can be realized using exclusive-OR (XOR) gates and OR gates draw its corresponding logic circuit.d) Simplify the Boolean function Z in its Product-of-Sums (POS) form using a K-Map, provide its simplified Boolean expression and draw its corresponding logic circuit.arrow_forward
- Given the function F(x,y,z)= y +x′za. Expand F to its Product-of-Maxterms formb. Implement F with NAND gates only.arrow_forward+ Consider the following circuit. 25 nF 4 ΚΩ ww HE + 2 H Vo 10 ΚΩ a) [5 pts] The frequency of the source voltage in the circuit is adjusted until ig is in phase with vg. What is the value of oo in radians per second? Show calculations in the report. b) [5 pts] If vg = 45 cosoot V (where o is the frequency found in [a]), what is the steady-state expression for Vo? Show calculations in the report. c) [10 pts] Simulate the circuit in Multisim using the frequency found in [a] and verify the total impedance, Ig and Vo. Add the expressions to find the Total impedance and Io as explained in question 1. When finding Vo use the Differential Voltage probe and place the + and - probes as shown below (note that only that part of the circuit is shown below.) Double click on the + probe to open the properties window. Change the RefDes to Vo and select Show RefDes. This will display the name of the probe as Vo on the schematic. Include the schematic and the Grapher view window in your report. Vo +-…arrow_forwardConsider the following circuit with v(t) = 250 sin(2500t) V. 62.5 Ω w 300 Ω i₁ + Vs 50 mH 500 Ω 1 μF (a) [14 pts] Obtain the following and include the calculations in the report. Vm, o, Frequency (f), ZL, ZC, Total Impedance (Ztot), Io, Steady-state expression for io:arrow_forward
- Not use ai pleasearrow_forwardAdd the two AC voltages given below by converting them to their phasor forms. Express your final answer as a sinusoid in the time domain with phase angles measured in radians. You must show your all your work for the complex matharrow_forwardDetermine a) ic1(t=0-) and vc1(t=0-), i.e. just before the switch changes positions (just before t = 0 s) b) ic1(t=0) and vc1(t=0), i.e. just after the switch changes positions c) ic1(t=∞) and vc1(t=∞), i.e. at steady state after the switch changes positions d) The expression for vc1(t) for t ≥ 0 sarrow_forward
- After having been in position 1 for a long time, the switch in the circuit below was moved to position 2 at t = 0 s. Determine: a) iL(t=0-) and vL(t=0-), i.e., just before the switch changes positions (just before t = 0 s) b) iL(t=0) and vL(t=0), i.e., just after the switch changes positions c) iL(t=∞) and vL(t=∞), i.e., at steady state after the switch changes positions d) The expression for iL(t) for t ≥ 0 sarrow_forwardCan you please answer these three questions.arrow_forwardThe counter-emf of a motor is always slightly less than the applied armature volt- age. Explain. Name two methods that are used to vary the speed of a de motor. Explain why the armature current of a shunt motor decreases as the motor accelerates.arrow_forward
- Power System Analysis and Design (MindTap Course ...Electrical EngineeringISBN:9781305632134Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. SarmaPublisher:Cengage Learning
