
Concept explainers
A certain store contains three balanced three-phase loads. The three loads are:
Load 1: 16kVA at 0.85 pf lagging
Load 2: 12 kVA at 0.6 pf lagging
Load 3: 8 kW at unity pf
The line voltage at the load is 208 V rms at 60 Hz, and the line impedance is

Find the line currents and the complex power delivered to the loads.
Answer to Problem 69P
The line currents
The complex power delivered to the loads is
Explanation of Solution
Given data:
The given three balanced three-phase loads are,
The reactive power of the Load 1 is
The reactive power of the Load 2 is 12 kVA and the power factor is 0.6 (lagging).
The real power of the Load 3 is
The line voltage at the load is
The line impedance is
Formula used:
Write the expression to find the complex power
Here,
Write the expression to find the average power
Here,
Write the expression to find the reactive power
Write the expression to find the complex power of the Load 2.
Here,
Write the expression to find the real power of the Load 2.
Here,
Write the expression to find the reactive power of the Load 2.
Write the expression to find the complex power of the Load 3.
Here,
Write the expression to find the real power of the Load 3.
Here,
Write the expression to find the reactive power of the Load 3.
Write the expression to find the total complex power.
Here,
Write the expression to find the phase voltage.
Here,
Write the expression to find the line to neutral voltage
Here,
Write the expression to find the complex power
Here,
Write the expression to find the line current
Here,
Write the expression to find the line current
Calculation:
The given lagging power factor of the Load 1 is,
Rewrite the above equation to find the angle
Substitute
Substitute
Substitute
The given lagging power factor of the Load 2 is,
Rearrange the above equation to find the angle
Substitute
Substitute
Substitute
The given unity power factor of the Load 3 is,
Rewrite the above equation to find the angle
Substitute
Rewrite the above equation to find
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Re-write the above equation to find the current
The complex current
The line current
Substitute
Substitute
Conclusion:
Thus,
The line currents
The complex power delivered to the loads is
Want to see more full solutions like this?
Chapter 12 Solutions
EBK FUNDAMENTALS OF ELECTRIC CIRCUITS
- Can you help me find the result of an integral 0/2 a² X + a dxarrow_forwardQ1/Sketch the root locus for the system shown in Figure 1 and find the following: a. The exact point and gain where the locus crosses the jo-axis b. The breakaway point on the real axis c. The range of K within which the system is stable d. Angles of departure and arrival R(s) + K(s²-4s +20) C(s) (s+2)(s + 4)arrow_forwardExam2 Subject: (Numerical Analysis) Class: Third Date: 27/4/2025 Time: 60 minutes Q1. For what values of k does this system of equations has no solution? (use Gauss-Jordan eliminations) kx + y + z = 1 x+ky + z = 1 x+y+kz=1arrow_forward
- Consider the Difference equation of a causal Linear time-invariant (LTI) system given by: (y(n) - 1.5y(n - 1) + 0.5y(n = 2) = x(n) a) Implement the difference equation model of this system. b) Find the system transfer function H(z). c) For an input x(n) = 8(n), determine the output response y(n). d) Verify the initial value theorem y(0) with part (c).arrow_forwardQ5B. Find the type of the controller in the following figures and use real values to find the transfer function of three of them[ Hint Pi,Pd and Lead,lag are found so put the controller with its corresponding compensator]. R₁ R₂ Rz HE C2 RA HE R₁ R2 RA とarrow_forwardQ1// Sketch the root locus for the unity feedback system. Where G(s)=)= K S3+252 +25 and find the following a. Sketch the asymptotes b. The exact point and gain where the locus crosses the jo-axis c. The breakaway point on the real axis d. The range of K within which the system is stable e. Angles of departure and arrival.arrow_forward
- Determine X(w) for the given function shown in Figure (1) by applying the differentiation property of the Fourier Transform. Figure (1) -1 x(t)arrow_forwardCan you solve a question with a drawing Determine X(w) for the given function shown in Figure (1) by applying the differentiation property of the Fourier Transform. Figure (1) -1 x(t)arrow_forwardAn inductor has a current flow of 3 A when connected to a 240 V, 60 Hz power line. The inductor has a wire resistance of 15 Find the Q of the inductorarrow_forward
- صورة من s94850121arrow_forwardThe joint density function of two continuous random variables X and Yis: p(x, y) = {Keós (x + y) Find (i) the constant K 0 2 0arrow_forwardShow all the steps please, Solve for the current through R2 if E2 is replaced by a current source of 10mA using superposition theorem. R5=470Ω R2=1000Ω R6=820Ωarrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
- Power System Analysis and Design (MindTap Course ...Electrical EngineeringISBN:9781305632134Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. SarmaPublisher:Cengage Learning
