College Physics
2nd Edition
ISBN: 9780134601823
Author: ETKINA, Eugenia, Planinšič, G. (gorazd), Van Heuvelen, Alan
Publisher: Pearson,
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 12, Problem 46P
* In the morning, the gauge pressure in your car tires is 35 psi. During the day, the air temperature increases from
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
On a cool morning, when the temperature is 12°C, you
measure the pressure in your car tires to be 20 psi. After
driving 20 mi on the freeway, the temperature of your tires
is 51°C.
▼
Part A
What pressure will your tire gauge now show?
Express your answer with the appropriate units.
P= 22.74
Submit
psi
Previous Answers Request Answer
?
X Incorrect; Try Again; 5 attempts remaining
A high-pressure gas cylinder contains 50.0 L of toxic gas at a pressure of 1.25 × 107 Pa and a temperature of 25.0°C. Its valve leaks after the cylinder is dropped. The cylinder is cooled to dry ice temperature (-78.5°C) to reduce the leak rate and pressure so that it can be safely repaired.
a.) What is the final pressure, in pascals, in the tank, assuming a negligible amount of gas leaks while being cooled and that there is no phase change? b.) What is the final pressure, in pascals, if 1/10 of the gas escapes during this process? c.) To what temperature, in kelvins, must the tank be cooled from its initial state to reduce the pressure to 1.00 atm (assuming the gas does not change phase and there is no leakage during cooling)?
PART A AND PART B
Chapter 12 Solutions
College Physics
Ch. 12 - Prob. 1RQCh. 12 - Prob. 2RQCh. 12 - Prob. 3RQCh. 12 - Review Question 12.4 Ken says that the temperature...Ch. 12 - Review Question 12.5 What is the difference...Ch. 12 - Prob. 6RQCh. 12 - Prob. 7RQCh. 12 - Review Question 12.8 How do we know that the Sun’s...Ch. 12 - Prob. 1MCQCh. 12 - Prob. 2MCQ
Ch. 12 - Prob. 3MCQCh. 12 - Prob. 4MCQCh. 12 - Prob. 5MCQCh. 12 - Prob. 6MCQCh. 12 - Prob. 7MCQCh. 12 - Prob. 8MCQCh. 12 - 9. How might physicists have come to know that at...Ch. 12 - 10. A cylindrical container is filled with a gas....Ch. 12 - Prob. 11MCQCh. 12 - A completely closed rigid container of gas is...Ch. 12 - Prob. 13MCQCh. 12 - Prob. 14MCQCh. 12 - Prob. 15MCQCh. 12 - Which of the following conditions are crucial for...Ch. 12 - Prob. 17CQCh. 12 - 18. Why does it hurt to walk barefoot on gravel?
Ch. 12 - 19. In the magic trick in which a person lies on a...Ch. 12 - What does it mean if the density of a gas is 1.29...Ch. 12 - How many oranges would you have if you had two...Ch. 12 - 22. Imagine that you have an unknown gas. What...Ch. 12 - Prob. 23CQCh. 12 - Describe how temperature and one degree are...Ch. 12 - Why does sugar dissolve faster in hot tea than in...Ch. 12 - 26. (a) Describe experiments that were used to...Ch. 12 - Give three examples of diffusion that are...Ch. 12 - Why do very light gases such as hydrogen not exist...Ch. 12 - Prob. 29CQCh. 12 - Explain why Earth has almost no free hydrogen in...Ch. 12 - What are the molar masses of molecular and atomic...Ch. 12 - Prob. 2PCh. 12 - The average particle density in the Milky Way...Ch. 12 - * (a) What is the concentration (number per cubic...Ch. 12 - Prob. 5PCh. 12 - 6. You find that the average gauge pressure in...Ch. 12 - Prob. 7PCh. 12 - Prob. 8PCh. 12 - Prob. 9PCh. 12 - 10. You have five molecules with the following...Ch. 12 - 11.Two gases in different containers have the same...Ch. 12 - 12. Four molecules are moving with the following...Ch. 12 - m2, what is the average pressure of the 10 tennis...Ch. 12 - * Friends throw snowballs at the wall of a...Ch. 12 - Prob. 15PCh. 12 - Prob. 16PCh. 12 - Prob. 17PCh. 12 - Air consists of many different molecules, for...Ch. 12 - Prob. 19PCh. 12 - 20. Air is a mixture of molecules of different...Ch. 12 - Prob. 21PCh. 12 - Prob. 22PCh. 12 - 23. ** A molecule moving at speed collides...Ch. 12 - Prob. 24PCh. 12 - Prob. 25PCh. 12 - * Even the best vacuum pumps cannot lower the...Ch. 12 - Prob. 27PCh. 12 - Prob. 28PCh. 12 - * The following data were collected for the...Ch. 12 - Prob. 30PCh. 12 - Prob. 31PCh. 12 - 32. * When surrounded by air at a pressure of 1.0...Ch. 12 - 33. * Some students are given the following...Ch. 12 - 34. ** You have gas in a container with a movable...Ch. 12 - Prob. 35PCh. 12 - * Bubbles While snorkeling, you see air bubbles...Ch. 12 - Prob. 37PCh. 12 - * Mount Everest (a) Determine the number of...Ch. 12 - Prob. 39PCh. 12 - Prob. 40PCh. 12 - Prob. 41PCh. 12 - 42. * Car tire dilemma Imagine a car tire that...Ch. 12 - 43. * There is a limit to how much gas can pass...Ch. 12 - Prob. 44PCh. 12 - Prob. 45PCh. 12 - 46. * In the morning, the gauge pressure in your...Ch. 12 - ** The P-versus-T graph in Figure P12.49 describes...Ch. 12 - ** The V-versus-T graph in Figure P12.50 describes...Ch. 12 - Prob. 51PCh. 12 - Prob. 52PCh. 12 - Prob. 53PCh. 12 - 55. ** A gas that can be described by the ideal...Ch. 12 - * Equation Jeopardy 3 The three equations below...Ch. 12 - Prob. 57GPCh. 12 - 58. * See the previous problem Explain how the...Ch. 12 - Prob. 59GPCh. 12 - Prob. 60GPCh. 12 - Prob. 61GPCh. 12 - Prob. 62GPCh. 12 - 63. EST * Car engine During a compression stroke...Ch. 12 - * How can the pressure of air in your house stay...Ch. 12 - 65 * Tell-all problem Tell everything you can...Ch. 12 - 66. ** Two massless, frictionless pistons are...Ch. 12 - 67. * A closed cylindrical container is divided...Ch. 12 - Prob. 68GPCh. 12 - 69. ** The speed of sound in an ideal gas is given...Ch. 12 - 70. * Using the information from problem 12.69,...Ch. 12 - Prob. 71GPCh. 12 - 73. Why is the wall tension in capillaries so...Ch. 12 - Prob. 74RPPCh. 12 - Prob. 75RPPCh. 12 - As a person ages, the fibers in arteries become...Ch. 12 - Prob. 77RPPCh. 12 - The bag and pump have a 6.76-kg mass. The volume...Ch. 12 - The bag and pump have a 6.76-kg mass. The volume...Ch. 12 - The bag and pump have a 6.76-kg mass. The volume...Ch. 12 - The bag and pump have a 6.76-kg mass. The volume...Ch. 12 - Prob. 82RPP
Additional Science Textbook Solutions
Find more solutions based on key concepts
Will a magnet attract any metallic object, such as those made of aluminum, or only those made of iron? (Try it ...
Physics for Scientists and Engineers with Modern Physics
Is it possible to be at position x = 0 and still be moving?
Essential University Physics: Volume 1 (3rd Edition)
Rivers on Mars (a) have never existed; (b) existed in the past but are dry today; (c) continue to have flowing ...
Life in the Universe (4th Edition)
44. Torque and force on a dipole. An electric dipole is in a uniform external electric field as shown in Figur...
College Physics (10th Edition)
3. What is free-fall, and why does it make you weightless? Briefly describe why astronauts are weightless in th...
The Cosmic Perspective
Figure 30.25b shows how continuous refraction in the ionosphere enables long-distance radio communication. Wave...
Essential University Physics: Volume 2 (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A gas is in a container of volume V0 at pressure P0. It is being pumped out of the container by a piston pump. Each stroke of the piston removes a volume Vs through valve A and then pushes the air out through valve B as shown in Figure P19.74. Derive an expression that relates the pressure Pn of the remaining gas to the number of strokes n that have been applied to the container. FIGURE P19.74arrow_forwardAn ideal gas is trapped inside a tube of uniform cross-sectional area sealed at one end as shown in Figure P19.49. A column of mercury separates the gas from the outside. The tube can be turned in a vertical plane. In Figure P19.49A, the column of air in the tube has length L1, whereas in Figure P19.49B, the column of air has length L2. Find an expression (in terms of the parameters given) for the length L3 of the column of air in Figure P19.49C, when the tube is inclined at an angle with respect to the vertical. FIGURE P19.49arrow_forward(a) An ideal gas occupies a volume of 1.0 cm3 at 20.C and atmospheric pressure. Determine the number of molecules of gas in the container, (b) If the pressure of the 1.0-cm3 volume is reduced to 1.0 1011 Pa (an extremely good vacuum) while the temperature remains constant, how many moles of gas remain in the container?arrow_forward
- Figure P20.45 shows a phase diagram of carbon dioxide in terms of pressure and temperature, a. Use the phase diagram to explain why dry ice (solid carbon dioxide) sublimates into vapor at atmospheric pressure rather than melting into a liquid. At what temperature does the dry ice sublimate when at atmospheric pressure? b. Estimate what pressure would be needed to liquefy carbon dioxide at room temperature.arrow_forwardAn air bubble starts rising from the bottom of a lake. Its diameter is 3.60 mm at the bottom and 4.00 mm at the surface. The depth of the lake is 2.50 m, and the temperature at the surface is 40.0C. What is the temperature at the bottom of the lake? Consider the atmospheric pressure to be 1.01 105 Pa and the density of water to be 1.00 103 kg/m3. Model the air as an ideal gas. 53. Use the ideal gas law for the bottom (point 1) and the surface (point 2) of the lake. At the surface, the pressure is atmospheric pressure. However, at the bottom it is equal to to the sum of the atmospheric pressure and the pressure due to 2.50 m column of water. P2=1.01105PaP1=P2+WghWP1=1.01105Pa+(1.00103kg/m3)(9.81m/s2)(2.50m) Use the ideal gas law (Eq. 19.17). T1=P1V1P2V2T2 The volume ratio at the bottom and top of the lake can be calculated with the diameters given. V1V2=43r1343r23=(1.82.0)3 T1=P1P2(V1V2)T2T1=1.01105Pa+(1.00103kg/m3)(9.81m/s2)(2.50m)1.01105Pa(1.802.00)3(40.0+273.15K)T1=284Karrow_forwardUnreasonable Results (a) How many moles per cubic meter of an ideal gas are there at a pressure of 1.001014N/m2 and at 0C ? (b) What is unreasonable about this result? (c) Which premise or assumption is responsible?arrow_forward
- A hand—driven tire pump has a piston with a 2.50cm diameter and a maximum stroke of 30.0 cm. (a) How much work do you do in one stroke if the average gauge pressure is 2.40105N/m2 (about 35 psi)? (b) What average force do you exert on the piston, neglecting friction and gravitational force?arrow_forwardOne mole of an ideal gas is contained in a cylinder with a movable piston. The initial pressure, volume, and temperature are Pi, Vi, and Ti, respectively. Find the work done on the gas in the following processes. In operational terms, describe how to carry out each process and show each process on a PV diagram. (a) an isobaric compression in which the final volume is one-half the initial volume (b) an isothermal compression in which the final pressure is four times the initial pressure (c) an isovolumetric process in which the final pressure is three times the initial pressurearrow_forward(a) If you toss 10 coins, what percent of the time will you get the three most likely macrostates (6 heads and 4 tails, 5 heads and 5 tails, 4 heads and 6 tails)? (b) You can realistically toss 10 coins and count the number of heads and tails about twice a minute. At mat rate, how long will it take on average to get either 10 heads and 0 tails or 0 heads and 10 tails?arrow_forward
- A rubber balloon is filled with 1 L of air at 1 atm and 300 K and is then put into a cryogenic refrigerator at 100 K. The rubber remains flexible as it cools. (i) What happens to the volume of the balloon? (a) It decreases to 13L. (b) It decreases to 1/3L. (c) It is constant. (d) It increases to 3L. (e) It increases to 3 L. (ii) What happens to the pressure of the air in the balloon? (a) It decreases to 13atm. (b) It decreases to 1/3atm. (c) It is constant. (d) It increases to 3atm. (e) It increases to 3 atm.arrow_forwardA person is in a closed room (a racquetball court) with v=453 m3 hitting a ball (m 42.0 g) around at random without any pauses. The average kinetic energy of the ball is 2.30 J. (a) What is the average value of vx2 ? Does it matter which direction you take to be x ? (b) Applying the methods of this chapter, find the average pressure on the walls? (c) Aside from the presence of only one "molecule" in this problem, what is the main assumption in Pressure, Temperature, and RMS Speed that does not apply here?arrow_forwardWhich one of the following statements is true? (a) The path on a PV diagram always goes from the smaller volume to the larger volume. (b) The path on a PV diagram always goes from the smaller pressure to the larger pressure. (c) The area under the path on a PV diagram is always equal to the work done on a gas. (d) The area under the path on a PV diagram is always equal in magnitude to the work done on a gas.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Thermodynamics: Crash Course Physics #23; Author: Crash Course;https://www.youtube.com/watch?v=4i1MUWJoI0U;License: Standard YouTube License, CC-BY