College Physics
2nd Edition
ISBN: 9780134601823
Author: ETKINA, Eugenia, Planinšič, G. (gorazd), Van Heuvelen, Alan
Publisher: Pearson,
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 12, Problem 43P
* There is a limit to how much gas can pass through a pipeline, because the pipes can only tolerate so much pressure on the walls. To increase the amount of gas going through the pipeline, engineers decide to cool the gas (to reduce its pressure) Suggest how much they should lower the temperature of the gas if they want to increase the mass per unit time by 1.5 times.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Use the following information to answer the next question.
Two mirrors meet an angle, a, of 105°. A ray of light is incident upon mirror A at an angle, i, of
42°. The ray of light reflects off mirror B and then enters water, as shown below:
Incident
ray at A
Note: This diagram is not to
scale.
a
Air (n = 1.00)
Water (n = 1.34)
1) Determine the angle of refraction of the ray of light in the water.
B
Hi can u please solve
6. Bending a lens in OpticStudio or OSLO. In either package, create a BK7 singlet lens of 10 mm semi-diameter
and with 10 mm thickness. Set the wavelength to the (default) 0.55 microns and a single on-axis field point at
infinite object distance. Set the image distance to 200 mm. Make the first surface the stop insure that the lens
is fully filled (that is, that the entrance beam has a radius of 10 mm). Use the lens-maker's equation to
calculate initial glass curvatures assuming you want a symmetric, bi-convex lens with an effective focal length
of 200 mm. Get this working and examine the RMS spot size using the "Text" tab of the Spot Diagram analysis
tab (OpticStudio) or the Spd command of the text widnow (OSLO). You should find the lens is far from
diffraction limited, with a spot size of more than 100 microns.
Now let's optimize this lens. In OpticStudio, create a default merit function optimizing on spot size.Then insert
one extra line at the top of the merit function. Assign the…
Chapter 12 Solutions
College Physics
Ch. 12 - Prob. 1RQCh. 12 - Prob. 2RQCh. 12 - Prob. 3RQCh. 12 - Review Question 12.4 Ken says that the temperature...Ch. 12 - Review Question 12.5 What is the difference...Ch. 12 - Prob. 6RQCh. 12 - Prob. 7RQCh. 12 - Review Question 12.8 How do we know that the Sun’s...Ch. 12 - Prob. 1MCQCh. 12 - Prob. 2MCQ
Ch. 12 - Prob. 3MCQCh. 12 - Prob. 4MCQCh. 12 - Prob. 5MCQCh. 12 - Prob. 6MCQCh. 12 - Prob. 7MCQCh. 12 - Prob. 8MCQCh. 12 - 9. How might physicists have come to know that at...Ch. 12 - 10. A cylindrical container is filled with a gas....Ch. 12 - Prob. 11MCQCh. 12 - A completely closed rigid container of gas is...Ch. 12 - Prob. 13MCQCh. 12 - Prob. 14MCQCh. 12 - Prob. 15MCQCh. 12 - Which of the following conditions are crucial for...Ch. 12 - Prob. 17CQCh. 12 - 18. Why does it hurt to walk barefoot on gravel?
Ch. 12 - 19. In the magic trick in which a person lies on a...Ch. 12 - What does it mean if the density of a gas is 1.29...Ch. 12 - How many oranges would you have if you had two...Ch. 12 - 22. Imagine that you have an unknown gas. What...Ch. 12 - Prob. 23CQCh. 12 - Describe how temperature and one degree are...Ch. 12 - Why does sugar dissolve faster in hot tea than in...Ch. 12 - 26. (a) Describe experiments that were used to...Ch. 12 - Give three examples of diffusion that are...Ch. 12 - Why do very light gases such as hydrogen not exist...Ch. 12 - Prob. 29CQCh. 12 - Explain why Earth has almost no free hydrogen in...Ch. 12 - What are the molar masses of molecular and atomic...Ch. 12 - Prob. 2PCh. 12 - The average particle density in the Milky Way...Ch. 12 - * (a) What is the concentration (number per cubic...Ch. 12 - Prob. 5PCh. 12 - 6. You find that the average gauge pressure in...Ch. 12 - Prob. 7PCh. 12 - Prob. 8PCh. 12 - Prob. 9PCh. 12 - 10. You have five molecules with the following...Ch. 12 - 11.Two gases in different containers have the same...Ch. 12 - 12. Four molecules are moving with the following...Ch. 12 - m2, what is the average pressure of the 10 tennis...Ch. 12 - * Friends throw snowballs at the wall of a...Ch. 12 - Prob. 15PCh. 12 - Prob. 16PCh. 12 - Prob. 17PCh. 12 - Air consists of many different molecules, for...Ch. 12 - Prob. 19PCh. 12 - 20. Air is a mixture of molecules of different...Ch. 12 - Prob. 21PCh. 12 - Prob. 22PCh. 12 - 23. ** A molecule moving at speed collides...Ch. 12 - Prob. 24PCh. 12 - Prob. 25PCh. 12 - * Even the best vacuum pumps cannot lower the...Ch. 12 - Prob. 27PCh. 12 - Prob. 28PCh. 12 - * The following data were collected for the...Ch. 12 - Prob. 30PCh. 12 - Prob. 31PCh. 12 - 32. * When surrounded by air at a pressure of 1.0...Ch. 12 - 33. * Some students are given the following...Ch. 12 - 34. ** You have gas in a container with a movable...Ch. 12 - Prob. 35PCh. 12 - * Bubbles While snorkeling, you see air bubbles...Ch. 12 - Prob. 37PCh. 12 - * Mount Everest (a) Determine the number of...Ch. 12 - Prob. 39PCh. 12 - Prob. 40PCh. 12 - Prob. 41PCh. 12 - 42. * Car tire dilemma Imagine a car tire that...Ch. 12 - 43. * There is a limit to how much gas can pass...Ch. 12 - Prob. 44PCh. 12 - Prob. 45PCh. 12 - 46. * In the morning, the gauge pressure in your...Ch. 12 - ** The P-versus-T graph in Figure P12.49 describes...Ch. 12 - ** The V-versus-T graph in Figure P12.50 describes...Ch. 12 - Prob. 51PCh. 12 - Prob. 52PCh. 12 - Prob. 53PCh. 12 - 55. ** A gas that can be described by the ideal...Ch. 12 - * Equation Jeopardy 3 The three equations below...Ch. 12 - Prob. 57GPCh. 12 - 58. * See the previous problem Explain how the...Ch. 12 - Prob. 59GPCh. 12 - Prob. 60GPCh. 12 - Prob. 61GPCh. 12 - Prob. 62GPCh. 12 - 63. EST * Car engine During a compression stroke...Ch. 12 - * How can the pressure of air in your house stay...Ch. 12 - 65 * Tell-all problem Tell everything you can...Ch. 12 - 66. ** Two massless, frictionless pistons are...Ch. 12 - 67. * A closed cylindrical container is divided...Ch. 12 - Prob. 68GPCh. 12 - 69. ** The speed of sound in an ideal gas is given...Ch. 12 - 70. * Using the information from problem 12.69,...Ch. 12 - Prob. 71GPCh. 12 - 73. Why is the wall tension in capillaries so...Ch. 12 - Prob. 74RPPCh. 12 - Prob. 75RPPCh. 12 - As a person ages, the fibers in arteries become...Ch. 12 - Prob. 77RPPCh. 12 - The bag and pump have a 6.76-kg mass. The volume...Ch. 12 - The bag and pump have a 6.76-kg mass. The volume...Ch. 12 - The bag and pump have a 6.76-kg mass. The volume...Ch. 12 - The bag and pump have a 6.76-kg mass. The volume...Ch. 12 - Prob. 82RPP
Additional Science Textbook Solutions
Find more solutions based on key concepts
Which culture produces the most lactic acid? Use the following choices to answer questions. a. E. coli growing ...
Microbiology: An Introduction
According to the logistic growth equation dNdt=rN(KN)K (A) the number of individuals added per unit time is gre...
Campbell Biology (11th Edition)
Fill in the blanks: The nose is to the mouth. The ankle is to the knee. The ring finger is to the inde...
Human Anatomy & Physiology (2nd Edition)
Plants use the process of photosynthesis to convert the energy in sunlight to chemical energy in the form of su...
Campbell Essential Biology (7th Edition)
Using the forked-line, or branch diagram, method, determine the genotypic and phenotypic ratios of these trihyb...
Concepts of Genetics (12th Edition)
Why is petroleum jelly used in the hanging-drop procedure?
Laboratory Experiments in Microbiology (12th Edition) (What's New in Microbiology)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- No chatgpt pls will upvote Already got wrong chatgpt answer .arrow_forwardUse the following information to answer the next question. Two mirrors meet an angle, a, of 105°. A ray of light is incident upon mirror A at an angle, i, of 42°. The ray of light reflects off mirror B and then enters water, as shown below: A Incident ray at A Note: This diagram is not to scale. Air (n = 1.00) Water (n = 1.34) Barrow_forwardUse the following information to answer the next question. Two mirrors meet an angle, a, of 105°. A ray of light is incident upon mirror A at an angle, i, of 42°. The ray of light reflects off mirror B and then enters water, as shown below: A Incident ray at A Note: This diagram is not to scale. Air (n = 1.00) Water (n = 1.34) Barrow_forward
- Good explanation it sure experts solve it.arrow_forwardNo chatgpt pls will upvote Asaparrow_forwardA satellite has a mass of 100kg and is located at 2.00 x 10^6 m above the surface of the earth. a) What is the potential energy associated with the satellite at this loction? b) What is the magnitude of the gravitational force on the satellite?arrow_forward
- No chatgpt pls will upvotearrow_forwardCorrect answer No chatgpt pls will upvotearrow_forwardStatistical thermodynamics. The number of imaginary replicas of a system of N particlesa) cannot be greater than Avogadro's numberb) must always be greater than Avogadro's number.c) has no relation to Avogadro's number.arrow_forward
- Lab-Based Section Use the following information to answer the lab based scenario. A student performed an experiment in an attempt to determine the index of refraction of glass. The student used a laser and a protractor to measure a variety of angles of incidence and refraction through a semi-circular glass prism. The design of the experiment and the student's results are shown below. Angle of Incidence (°) Angle of Refraction (º) 20 11 30 19 40 26 50 31 60 36 70 38 2a) By hand (i.e., without using computer software), create a linear graph on graph paper using the student's data. Note: You will have to manipulate the data in order to achieve a linear function. 2b) Graphically determine the index of refraction of the semi-circular glass prism, rounding your answer to the nearest hundredth.arrow_forwardUse the following information to answer the next two questions. A laser is directed at a prism made of zircon (n = 1.92) at an incident angle of 35.0°, as shown in the diagram. 3a) Determine the critical angle of zircon. 35.0° 70° 55 55° 3b) Determine the angle of refraction when the laser beam leaves the prism.arrow_forwardUse the following information to answer the next two questions. A laser is directed at a prism made of zircon (n = 1.92) at an incident angle of 35.0°, as shown in the diagram. 3a) Determine the critical angle of zircon. 35.0° 70° 55 55° 3b) Determine the angle of refraction when the laser beam leaves the prism.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Thermodynamics: Crash Course Physics #23; Author: Crash Course;https://www.youtube.com/watch?v=4i1MUWJoI0U;License: Standard YouTube License, CC-BY