
Chemistry: The Molecular Nature of Matter
7th Edition
ISBN: 9781118516461
Author: Neil D. Jespersen, Alison Hyslop
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
Chapter 12, Problem 43RQ
Interpretation Introduction
Interpretation:
In the aqueous solution 0.50m NaI or 0.50 m
Concept Introduction:
The boiling point is defined as the temperature at which any solution starts to boil. The boiling point elevation is given by the following equation:
In the above-mentioned equation,
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Draw the most stable cations formed in the mass spectrometer by a deavage of the following compound
Draw the most stable cations formed in the mass spectrometer by a cleavage of the following compound
он
Curved arrows are used to illustrate the flow of electrons. Using the provided starting anand product sytucutrs, draw the curved electron-pusing arrows for the following reaction or mechanistic steps. Be sure to account for all bond-breaking and bind-making steps
Draw the major elimination and substitution products formed in this reavtion. Use a dash or wedge bond to indicatr the stereochemistry of substituents on assymetric centers, wheere applicable. Ignore any inorganic byproducts.
Chapter 12 Solutions
Chemistry: The Molecular Nature of Matter
Ch. 12 - Which substances will be soluble in water? (a)...Ch. 12 - Which substances will be soluble in nonpolar...Ch. 12 - Draw an enthalpy diagram for the endothermic...Ch. 12 - When potassium hydroxide is dissolved in water,...Ch. 12 - Prob. 5PECh. 12 - When sodium hydroxide is dissolved in water, the...Ch. 12 - At 25C and standard pressure, a hydrogen sulfide...Ch. 12 - How many grams of nitrogen and oxygen are...Ch. 12 - What volume of water at 20.0C(d=0.9982gmL-1) is...Ch. 12 - Prob. 10PE
Ch. 12 - Prob. 11PECh. 12 - Water freezes at a lower temperature when it...Ch. 12 - Prob. 13PECh. 12 - Prob. 14PECh. 12 - Prob. 15PECh. 12 - Prob. 16PECh. 12 - Dibutyl phthalate, C16H22O4 (molar mass...Ch. 12 - Prob. 18PECh. 12 - At , the vapor pressure of cyclohexane, a nonpolar...Ch. 12 - Using the information from Practice Exercise...Ch. 12 - In making candy, a certain recipe calls for...Ch. 12 - How many grams of glucose (molar mass = 180.9 g...Ch. 12 - A solution made by dissolving 3.46 g of an unknown...Ch. 12 - Prob. 24PECh. 12 - What is the osmotic pressure, in mm Hg and mm H2O,...Ch. 12 - What is the osmotic pressure in torr of a 0.0115 M...Ch. 12 - Estimate the molecular mass of a protein when...Ch. 12 - Prob. 28PECh. 12 - Calculate the freezing point of aqueous 0.237mLiCl...Ch. 12 - Determine the freezing point of aqueous solutions...Ch. 12 - Prob. 31PECh. 12 - Prob. 32PECh. 12 - Intermolecular Forces and the Formation of...Ch. 12 - Intermolecular Forces and the Formation of...Ch. 12 - Intermolecular Forces and the Formation of...Ch. 12 - Intermolecular Forces and the Formation of...Ch. 12 - Intermolecular Forces and the Formation of...Ch. 12 - Intermolecular Forces and the Formation of...Ch. 12 - Prob. 7RQCh. 12 - Intermolecular Forces and the Formation of...Ch. 12 - Heats of Solution
12.9 The value of for a soluble...Ch. 12 - Heats of Solution Referring to Question 12.9,...Ch. 12 - Heats of Solution Which would be expected to have...Ch. 12 - Heats of Solution
12.12. Suggest a reason why the...Ch. 12 - Prob. 13RQCh. 12 - Prob. 14RQCh. 12 - Heat of solution When a certain solid dissolves in...Ch. 12 - Heat of solution
12.16 If the value of for the...Ch. 12 - Prob. 17RQCh. 12 - Solubility as a Function of Temperature
12.18 If a...Ch. 12 - Solubility as a Function of Temperature Anglers...Ch. 12 - Henry's Law
12.20 What is Henry’s law?
Ch. 12 - Henry's Law
12.21 Mountain streams often contain...Ch. 12 - Henry's Law Why is ammonia so much more soluble in...Ch. 12 - Prob. 23RQCh. 12 - Prob. 24RQCh. 12 - Prob. 25RQCh. 12 - Prob. 26RQCh. 12 - Concentration Units Suppose a 1.0 m solution of a...Ch. 12 - Colligative Properties What specific fact about a...Ch. 12 - Colligative Properties
12.29. What is Raoult’s...Ch. 12 - Colligative Properties Why does a nonvolatile...Ch. 12 - Prob. 31RQCh. 12 - Prob. 32RQCh. 12 - Prob. 33RQCh. 12 - Prob. 34RQCh. 12 - Prob. 35RQCh. 12 - Prob. 36RQCh. 12 - Prob. 37RQCh. 12 - Prob. 38RQCh. 12 - Colligative Properties
12.39 When a solid is...Ch. 12 - Colligative Properties
12.40 What is the...Ch. 12 - Prob. 41RQCh. 12 - Colligative Properties What is the vant Hoff...Ch. 12 - Prob. 43RQCh. 12 - Prob. 44RQCh. 12 - Prob. 45RQCh. 12 - Prob. 46RQCh. 12 - Heterogeneous Mixtures What is the Tyndall effect?Ch. 12 - Heterogeneous Mixtures
12.48 What is a micelle,...Ch. 12 - Heat of Solution For an ionic compound dissolving...Ch. 12 - Heat of solution
12.50 Consider the formation of a...Ch. 12 - Henry's Law The solubility of methane, the chief...Ch. 12 - Henry's Law If the solubility of a gas in water is...Ch. 12 - At 740 torr and 20.0C, nitrogen has a solubility...Ch. 12 - Hydrogen gas has a solubility in water of...Ch. 12 - 12.55. If 100.0 mL of water is shaken with oxygen...Ch. 12 - 12.56 Helium gas can be used to displace other...Ch. 12 - Concentration Units Muriatic acid is the...Ch. 12 - Prob. 58RQCh. 12 - What mass of a 0.853 molal solution of iron(III)...Ch. 12 - In order to conduct three experiments that...Ch. 12 - Prob. 61RQCh. 12 - A solution of acetic acid, CH3COOH, has a...Ch. 12 - Prob. 63RQCh. 12 - Botulinum toxin is one of the most acutely toxic...Ch. 12 - A solution of fructose, C6H12O6, a sugar found in...Ch. 12 - Prob. 66RQCh. 12 - Prob. 67RQCh. 12 - Prob. 68RQCh. 12 - Prob. 69RQCh. 12 - An aqueous solution of isopropyl alcohol, C3H8O,...Ch. 12 - Sodium nitrate, NaNO3, is sometimes added to...Ch. 12 - In an aqueous solution of sulfuric acid, the...Ch. 12 - Colligative Properties At 25C, the vapor pressure...Ch. 12 - Colligative Properties The vapor pressure of water...Ch. 12 - 12.75 At the vapor pressures of benzene and...Ch. 12 - Pentane (C5HI2)andheptane(C7HI6) are two...Ch. 12 - *12.77 Benzene and toluene help achieve good...Ch. 12 - The vapor pressure of pure methanol, CH3OH, at 33C...Ch. 12 - A solution containing 8.3 g of a nonvolatile,...Ch. 12 - At 21.0C, a solution of 18.26 g of a nonvolatile,...Ch. 12 - 12.81 How many grams of sucrose are needed to...Ch. 12 - Prob. 82RQCh. 12 - A solution of 12.00 g of an unknown...Ch. 12 - 12.84 A solution of 14 g of a nonvolatile,...Ch. 12 - What are the molecular mass and molecular formula...Ch. 12 - Benzene reacts with hot concentrated nitric acid...Ch. 12 - 12.87 (a) Show that the following equation is...Ch. 12 - A saturated solution is made by dissolving 0.400 g...Ch. 12 - Prob. 89RQCh. 12 - How many grams of A1C13 would have to be dissolved...Ch. 12 - 12.91 What is the osmotic pressure, in torr, of a ...Ch. 12 - Below are the concentrations of the most abundant...Ch. 12 - 12.93 What is the expected freezing point of a...Ch. 12 - Prob. 94RQCh. 12 - 12.95 The van’t Hoff factor for the solute in is...Ch. 12 - 12.96 What is the expected van’t Hoff factor for ...Ch. 12 - Prob. 97RQCh. 12 - *12.98 The “bends” is a medical emergency caused...Ch. 12 - In order for mosquitos to survive the cold winter,...Ch. 12 - The vapor pressure of a mixture of 0.400 kg of...Ch. 12 - Ethylene glycol, C2H6O2, is used in many...Ch. 12 - What is the osmotic pressure in torr of a 0.010 M...Ch. 12 - The osmotic pressure of a dilute solution of a...Ch. 12 - Prob. 104RQCh. 12 - Consider an aqueous 1.00 m solution of Na3PO4,a...Ch. 12 - A 2.50 g sample of aluminum chloride and sodium...Ch. 12 - Prob. 107RQCh. 12 - A sample containing only iron(II) nitrate and...Ch. 12 - Prob. 109RQCh. 12 - Prob. 110RQCh. 12 - How many mL of 0.223MK2Cr2O7 are needed to...Ch. 12 - Prob. 112RQCh. 12 - A certain organic substance is soluble in solvent...Ch. 12 - Prob. 114RQCh. 12 - Prob. 115RQCh. 12 - Having had some laboratory experience by now,...Ch. 12 - 12.117 This chapter focused on the physical...Ch. 12 - 12.118 Using the principles developed in this...Ch. 12 - Prob. 119RQCh. 12 - Prob. 120RQCh. 12 - Prob. 121RQCh. 12 - Consider a solution that has the maximum amount of...Ch. 12 - 12.123 When a 10.0 molar solution of sodium...
Knowledge Booster
Similar questions
- Draw the two possible products produced in this E2 elimination. Ignore any inorganic byproductsarrow_forwardDraw the major products of this SN1 reaction. Ignore any inorganic byproducts.arrow_forwardDraw the major elimination and substitution products formed in this reaction. Use a dash or wedge bond to indicate the stereochemistry of substituents on asymmetric centers, wehre applicable. Ignore and inorganic byproducts.arrow_forward
- Curved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electron-pushing arrows for the following reaction or mechanistic step(s). Be sure to account for all bond-breaking and bond-making steps. Drawing Arrows THE Problem 33 of 35 N. C:0 Na + Submit Drag To Pan +arrow_forwardDraw the product of the E2 reaction shown below. Include the correct stereochemistry. Ignore and inorganic byproducts.arrow_forwardDraw the major producrs of this SN1 reaction. Ignore any inorganic byproducts. Use a dash or wedge bond to indicate the sereochemistry of substituents on asymmetric centers where appllicable.arrow_forward
- 5) Oxaloacetic Acid is an important intermediate in the biosynthesis of citric acid. Synthesize oxaloacetic acid using a mixed Claisen Condensation reaction with two different esters and a sodium ethoxide base. Give your answer as a scheme Hint 1: Your final acid product is producing using a decarboxylation reaction. Hint 2: Look up the structure of oxalic acid. HO all OH oxaloacetic acidarrow_forward20. The Brusselator. This hypothetical system was first proposed by a group work- ing in Brussels [see Prigogine and Lefever (1968)] in connection with spatially nonuniform chemical patterns. Because certain steps involve trimolecular reac tions, it is not a model of any real chemical system but rather a prototype that has been studied extensively. The reaction steps are A-X. B+X-Y+D. 2X+ Y-3X, X-E. 305 It is assumed that concentrations of A, B, D, and E are kept artificially con stant so that only X and Y vary with time. (a) Show that if all rate constants are chosen appropriately, the equations de scribing a Brusselator are: dt A-(B+ 1)x + x²y, dy =Bx-x²y. diarrow_forwardProblem 3. Provide a mechanism for the following transformation: H₂SO A Me. Me Me Me Mearrow_forward
- You are trying to decide if there is a single reagent you can add that will make the following synthesis possible without any other major side products: xi 1. ☑ 2. H₂O хе i Draw the missing reagent X you think will make this synthesis work in the drawing area below. If there is no reagent that will make your desired product in good yield or without complications, just check the box under the drawing area and leave it blank. Click and drag to start drawing a structure. There is no reagent that will make this synthesis work without complications. : ☐ S ☐arrow_forwardPredict the major products of this organic reaction: H OH 1. LiAlH4 2. H₂O ? Note: be sure you use dash and wedge bonds when necessary, for example to distinguish between major products with different stereochemistry. Click and drag to start drawing a structure. G C टेarrow_forwardFor each reaction below, decide if the first stable organic product that forms in solution will create a new C-C bond, and check the appropriate box. Next, for each reaction to which you answered "Yes" to in the table, draw this product in the drawing area below. Note for advanced students: for this problem, don't worry if you think this product will continue to react under the current conditions - just focus on the first stable product you expect to form in solution. NH2 CI MgCl ? Will the first product that forms in this reaction create a new CC bond? Yes No MgBr ? Will the first product that forms in this reaction create a new CC bond? Yes No G टेarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning

Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning

Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning

Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning

Introduction to General, Organic and Biochemistry
Chemistry
ISBN:9781285869759
Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar Torres
Publisher:Cengage Learning

Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning

Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning