Chemistry: The Molecular Nature of Matter
7th Edition
ISBN: 9781118516461
Author: Neil D. Jespersen, Alison Hyslop
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 12, Problem 45RQ
Interpretation Introduction
Interpretation:
Whether sodium stearate can stabilize the water-in-oil emulsion or not, is to be explained.
Concept Introduction:
There are certain substances such as oil and water which do not mix with each other and form a temporarily stable mixture called emulsion. There are certain chemicals such as sodium stearate which have a different polar head and a nonpolar tail. They attract the opposite polar and non-polar part of the emulsion and solve the problem of the emulsion formation.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
1. explain the influence of temperature and freezing on the stability of mayonnaise.
2. explain how a broken oil-in-water emulsion can be re-established?
(A) Molar mass of Atrazine: 215.685 g/mol
Calculate the amount of Atrazine needed to prepare 100 mL of a 1M concentrated stock solution . Measurements should be calculated in grams(g) or miligrams (mg).
(B) Molar mass of Glyphosate: 169.07g/mol
Calculate the amount of Glyphosate needed to prepare 100 mL of a 1M concentrated stock solution . Measurements should be calculated in grams(g) or miligrams (mg).
2. What type of intermolecular force of attraction is established when sodium chloride is dissolved in pure waterChoices: Hydrogen bond, Dipole-dipole interaction, London dispersion forces, ion-dipole interaction
Chapter 12 Solutions
Chemistry: The Molecular Nature of Matter
Ch. 12 - Which substances will be soluble in water? (a)...Ch. 12 - Which substances will be soluble in nonpolar...Ch. 12 - Draw an enthalpy diagram for the endothermic...Ch. 12 - When potassium hydroxide is dissolved in water,...Ch. 12 - Prob. 5PECh. 12 - When sodium hydroxide is dissolved in water, the...Ch. 12 - At 25C and standard pressure, a hydrogen sulfide...Ch. 12 - How many grams of nitrogen and oxygen are...Ch. 12 - What volume of water at 20.0C(d=0.9982gmL-1) is...Ch. 12 - Prob. 10PE
Ch. 12 - Prob. 11PECh. 12 - Water freezes at a lower temperature when it...Ch. 12 - Prob. 13PECh. 12 - Prob. 14PECh. 12 - Prob. 15PECh. 12 - Prob. 16PECh. 12 - Dibutyl phthalate, C16H22O4 (molar mass...Ch. 12 - Prob. 18PECh. 12 - At , the vapor pressure of cyclohexane, a nonpolar...Ch. 12 - Using the information from Practice Exercise...Ch. 12 - In making candy, a certain recipe calls for...Ch. 12 - How many grams of glucose (molar mass = 180.9 g...Ch. 12 - A solution made by dissolving 3.46 g of an unknown...Ch. 12 - Prob. 24PECh. 12 - What is the osmotic pressure, in mm Hg and mm H2O,...Ch. 12 - What is the osmotic pressure in torr of a 0.0115 M...Ch. 12 - Estimate the molecular mass of a protein when...Ch. 12 - Prob. 28PECh. 12 - Calculate the freezing point of aqueous 0.237mLiCl...Ch. 12 - Determine the freezing point of aqueous solutions...Ch. 12 - Prob. 31PECh. 12 - Prob. 32PECh. 12 - Intermolecular Forces and the Formation of...Ch. 12 - Intermolecular Forces and the Formation of...Ch. 12 - Intermolecular Forces and the Formation of...Ch. 12 - Intermolecular Forces and the Formation of...Ch. 12 - Intermolecular Forces and the Formation of...Ch. 12 - Intermolecular Forces and the Formation of...Ch. 12 - Prob. 7RQCh. 12 - Intermolecular Forces and the Formation of...Ch. 12 - Heats of Solution
12.9 The value of for a soluble...Ch. 12 - Heats of Solution Referring to Question 12.9,...Ch. 12 - Heats of Solution Which would be expected to have...Ch. 12 - Heats of Solution
12.12. Suggest a reason why the...Ch. 12 - Prob. 13RQCh. 12 - Prob. 14RQCh. 12 - Heat of solution When a certain solid dissolves in...Ch. 12 - Heat of solution
12.16 If the value of for the...Ch. 12 - Prob. 17RQCh. 12 - Solubility as a Function of Temperature
12.18 If a...Ch. 12 - Solubility as a Function of Temperature Anglers...Ch. 12 - Henry's Law
12.20 What is Henry’s law?
Ch. 12 - Henry's Law
12.21 Mountain streams often contain...Ch. 12 - Henry's Law Why is ammonia so much more soluble in...Ch. 12 - Prob. 23RQCh. 12 - Prob. 24RQCh. 12 - Prob. 25RQCh. 12 - Prob. 26RQCh. 12 - Concentration Units Suppose a 1.0 m solution of a...Ch. 12 - Colligative Properties What specific fact about a...Ch. 12 - Colligative Properties
12.29. What is Raoult’s...Ch. 12 - Colligative Properties Why does a nonvolatile...Ch. 12 - Prob. 31RQCh. 12 - Prob. 32RQCh. 12 - Prob. 33RQCh. 12 - Prob. 34RQCh. 12 - Prob. 35RQCh. 12 - Prob. 36RQCh. 12 - Prob. 37RQCh. 12 - Prob. 38RQCh. 12 - Colligative Properties
12.39 When a solid is...Ch. 12 - Colligative Properties
12.40 What is the...Ch. 12 - Prob. 41RQCh. 12 - Colligative Properties What is the vant Hoff...Ch. 12 - Prob. 43RQCh. 12 - Prob. 44RQCh. 12 - Prob. 45RQCh. 12 - Prob. 46RQCh. 12 - Heterogeneous Mixtures What is the Tyndall effect?Ch. 12 - Heterogeneous Mixtures
12.48 What is a micelle,...Ch. 12 - Heat of Solution For an ionic compound dissolving...Ch. 12 - Heat of solution
12.50 Consider the formation of a...Ch. 12 - Henry's Law The solubility of methane, the chief...Ch. 12 - Henry's Law If the solubility of a gas in water is...Ch. 12 - At 740 torr and 20.0C, nitrogen has a solubility...Ch. 12 - Hydrogen gas has a solubility in water of...Ch. 12 - 12.55. If 100.0 mL of water is shaken with oxygen...Ch. 12 - 12.56 Helium gas can be used to displace other...Ch. 12 - Concentration Units Muriatic acid is the...Ch. 12 - Prob. 58RQCh. 12 - What mass of a 0.853 molal solution of iron(III)...Ch. 12 - In order to conduct three experiments that...Ch. 12 - Prob. 61RQCh. 12 - A solution of acetic acid, CH3COOH, has a...Ch. 12 - Prob. 63RQCh. 12 - Botulinum toxin is one of the most acutely toxic...Ch. 12 - A solution of fructose, C6H12O6, a sugar found in...Ch. 12 - Prob. 66RQCh. 12 - Prob. 67RQCh. 12 - Prob. 68RQCh. 12 - Prob. 69RQCh. 12 - An aqueous solution of isopropyl alcohol, C3H8O,...Ch. 12 - Sodium nitrate, NaNO3, is sometimes added to...Ch. 12 - In an aqueous solution of sulfuric acid, the...Ch. 12 - Colligative Properties At 25C, the vapor pressure...Ch. 12 - Colligative Properties The vapor pressure of water...Ch. 12 - 12.75 At the vapor pressures of benzene and...Ch. 12 - Pentane (C5HI2)andheptane(C7HI6) are two...Ch. 12 - *12.77 Benzene and toluene help achieve good...Ch. 12 - The vapor pressure of pure methanol, CH3OH, at 33C...Ch. 12 - A solution containing 8.3 g of a nonvolatile,...Ch. 12 - At 21.0C, a solution of 18.26 g of a nonvolatile,...Ch. 12 - 12.81 How many grams of sucrose are needed to...Ch. 12 - Prob. 82RQCh. 12 - A solution of 12.00 g of an unknown...Ch. 12 - 12.84 A solution of 14 g of a nonvolatile,...Ch. 12 - What are the molecular mass and molecular formula...Ch. 12 - Benzene reacts with hot concentrated nitric acid...Ch. 12 - 12.87 (a) Show that the following equation is...Ch. 12 - A saturated solution is made by dissolving 0.400 g...Ch. 12 - Prob. 89RQCh. 12 - How many grams of A1C13 would have to be dissolved...Ch. 12 - 12.91 What is the osmotic pressure, in torr, of a ...Ch. 12 - Below are the concentrations of the most abundant...Ch. 12 - 12.93 What is the expected freezing point of a...Ch. 12 - Prob. 94RQCh. 12 - 12.95 The van’t Hoff factor for the solute in is...Ch. 12 - 12.96 What is the expected van’t Hoff factor for ...Ch. 12 - Prob. 97RQCh. 12 - *12.98 The “bends” is a medical emergency caused...Ch. 12 - In order for mosquitos to survive the cold winter,...Ch. 12 - The vapor pressure of a mixture of 0.400 kg of...Ch. 12 - Ethylene glycol, C2H6O2, is used in many...Ch. 12 - What is the osmotic pressure in torr of a 0.010 M...Ch. 12 - The osmotic pressure of a dilute solution of a...Ch. 12 - Prob. 104RQCh. 12 - Consider an aqueous 1.00 m solution of Na3PO4,a...Ch. 12 - A 2.50 g sample of aluminum chloride and sodium...Ch. 12 - Prob. 107RQCh. 12 - A sample containing only iron(II) nitrate and...Ch. 12 - Prob. 109RQCh. 12 - Prob. 110RQCh. 12 - How many mL of 0.223MK2Cr2O7 are needed to...Ch. 12 - Prob. 112RQCh. 12 - A certain organic substance is soluble in solvent...Ch. 12 - Prob. 114RQCh. 12 - Prob. 115RQCh. 12 - Having had some laboratory experience by now,...Ch. 12 - 12.117 This chapter focused on the physical...Ch. 12 - 12.118 Using the principles developed in this...Ch. 12 - Prob. 119RQCh. 12 - Prob. 120RQCh. 12 - Prob. 121RQCh. 12 - Consider a solution that has the maximum amount of...Ch. 12 - 12.123 When a 10.0 molar solution of sodium...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- 24.9 g of an unknown molecular solute is dissolved in 5.01 moles of 1,2-ethanediol (C2H6O2), causing the freezing point of 1,2-ethanediol to decrease by 3.32 °C. Calculate the molar mass of the solute. For 1,2-ethanediol, the molar mass is 62.07 g/mol and Kf = 3.11 °C/m.arrow_forwardWhich statement is INCORRECT about an aprotic solvent? It cannot interact with water through H-bonding. It is polar. It can interact strongly with polar solutes. It does not have ionizable hydrogen in its structure.arrow_forward90 g of KCl is dissolved in 250 g of water at 35 celcius with 80% dissociation. Calculate the: • BPE FPD • Vapor Pressure of the solution • Osmotic Pressurearrow_forward
- An organic compound was prepared and purified by chromatography. A conductivity measurement showed the compound to be a nonelectrolyte. Elemental analysis gave an empirical formula of CH3O. A 0.127 g sample of the compound was dissolved in water and diluted to 100.0 mL, and the osmotic pressure of that solution was determined to 0.492 atm at 20°C. Determine the molar mass of the compound. (R = 0.0821 L·atm/K·mol) None of the above 42.1 g/mol 62.1 g/mol 32.1 g/mol 52.1 g/molarrow_forwardAn organic compound was prepared and purified by chromatography. A conductivity measurement showed the compound to be a nonelectrolyte. Elemental analysis gave an empirical formula of CH3O. A 0.127 g sample of the compound was dissolved in water and diluted to 100.0 mL, and the osmotic pressure of that solution was determined to 0.492 atm at 20°C. Determine the molar mass of the compound. (R = 0.0821 L·atm/K·mol) None of the above 42.1 g/mol 62.1 g/mol 32.1 g/mol 52.1 g/molarrow_forwardWhich of the compounds A-D would be expected to dissolve in dilute sodium hydroxide? A OH B & C Only C All of the compounds ○ A & D ○ C&D B HO H3C. N 'N' CH3 C D CH3arrow_forward
- Why do two layers form when solutions containing water are added to the extracted dichloromethane (CH2CI-2) solution?arrow_forwardEthylene diamine (bp 116 °C) and water form a maximum boiling azeotrope (bp 120 °C); the azeotropic mixture is 80% in ethylene diamine. SKETCH a distillation curve (volume on the x-axis and temperature on the y-axis) to show what you would expect to see should one distill 35 mL of a 50:50 mixture of these liquids. Be as quantitatively accurate as possible (using graph paper).arrow_forwardWhat specifically occurs when a liquid mixture is distilled? 1) Components of a solid mixture are separated by differences in boiling points 2) Components of a solid mixture are separated by differences in melting points 3) Components of a liquid mixture are separated by differences in boiling points 4) Components of a liquid mixture are separated by differences in melting pointsarrow_forward
- What are emulsions? Name an emulsion in which water is a dispersed phase.arrow_forwardChemistryarrow_forward5) Calculate the concentration of water solution of sodium chlorine which would have the same osmotic pressure as blood plasma if the concentration of the osmotic active particles in blood plasma (the osmolarity of plasma) is 300 mosmol/l.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
World of Chemistry, 3rd edition
Chemistry
ISBN:9781133109655
Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCoste
Publisher:Brooks / Cole / Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax