
Concept explainers
Consider the following very simple model of blood cholesterol levels based on the fact that cholesterol is manufactured by the body for use in the construction of cell walls and is absorbed from foods containing cholesterol: Let C(t)be the amount (in milligrams per deciliter) of cholesterol in the blood of a particular person at time t(in days). Then
where
N = the person’s natural cholesterol level.
k1= production parameter.
E = daily rate at which cholesterol is eaten, and
k2= absorption parameter.
(a) Suppose N = 200,k1= 0.1,k2= 0.1,E = 400, and C(0)= 150. What will the person’s cholesterol level be after 2 days on this diet?
(b) With the initial conditions as above, what will the person’s cholesterol level be after 5 days on this diet?
(c) What will the person’s cholesterol level be after a long time on this diet?
(d) High levels of cholesterol in the blood are known to be a risk factor for heart disease. Suppose that, after a long time on the high cholesterol diet described above, the person goes on a very low cholesterol diet, so E changes to E = 100. (The initial cholesterol level at the starting time of this diet is the result of part (c).) What will the person’s cholesterol level be after 1 day on the new diet, after 5days on the new diet, and after a very long time on the new diet?
(e) Suppose the person stays on the high cholesterol diet but takes drugs that block some of the uptake of cholesterol from food, so k2changes to k2= 0.075. With the cholesterol level from part (c), what will the person’s cholesterol level be after 1 day, after 5 days, and after a very long time?

Trending nowThis is a popular solution!

Chapter 1 Solutions
Differential Equations
- Given the following set X = {2, 4, 6, 8} and Y = {1, 2, 3}, explicitly give (e.g., write down the sets with numerical entries) of the outputs of the following requested set operations: (a) [2 points] XUY (Union) (b) [2 points] XY (Intersection) (c) [3 points] X\Y (Difference) (d) [3 points] XAY (Symmetric Difference)arrow_forward4.2 Product and Quotient Rules 1. 9(x)=125+1 y14+2 Use the product and/or quotient rule to find the derivative of each function. a. g(x)= b. y (2x-3)(x-1) c. y== 3x-4 √xarrow_forward4.2 Product and Quotient Rules 1. Use the product and/or quotient rule to find the derivative of each function. 2.5 a. g(x)=+1 y14+2 √x-1) b. y=(2x-3)(x-:arrow_forward
- For what values of k will the equation (k + 1)x² + 6kx + 2k² - x = 0 have: a) one root equal zero b) one root the reciprocal of the other c) roots numerically equal but of opposite signarrow_forward3. The total profit (in dollars) from selling x watches is P(x)=0.52x²-0.0002x². Find and interpret the following. a) P(100) b) P'(100)arrow_forward3. Find the slope and the equation of the tangent line to the graph of the given function at the given value of x. -4 f(x)=x-x³;x=2arrow_forward
- 2. Find the equation of the tangent line to the graph of the given function at the given point. f(x)=(x+3)(2x²-6) at (1,-16)arrow_forward6. Researchers who have been studying the alarming rate at which the level of the Dead Sea has been dropping have shown that the density d (x) (in g per cm³) of the Dead Sea brine during evaporation can be estimated by the function d(x)=1.66 0.90x+0.47x², where x is the fraction of the remaining brine, 0≤x≤1. a) Estimate the density of the brine when 60% of the brine remains. b) Find and interpret the instantaneous rate of change of the density when 60% of the brine remains.arrow_forward5. If g'(5) 10 and h'(5)=-4, find f'(5) for f(x)=4g(x)-2h(x)+3.arrow_forward
- 2. Find each derivative. Write answers with positive exponents. a) Dx 9x -3 [97] b) f'(3) if f(x) = x²-5x² 8arrow_forwardT3.2: Prove that if the Graceful Tree Conjecture (every tree has a graceful labeling) is true and T' is a tree with m edges, then K2, decomposes into 2m - 1 copies of T. Hint - Delete a leaf to get 7" and apply the decomposition of K2(m-1)+1 = K2m-1 into T'. Then explain how the decomposition allows the pendant edge to be added to a new vertex to obtain a decomposition of K2m into copies of T.arrow_forwardUse the matrix tree theorem to determine the number of spanning trees of the graphs Kr∨sK1.These are the graphs formed by by adding all edges between a complete graph on r vertices and atrivial graph (no edges) on s vertices.arrow_forward
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
- Trigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage LearningAlgebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning




