
Concept explainers
Monthly Savings Program Alice opens a savings account that pays 3% interest per year, compounded monthly. She begins by depositing $100 at the start of the first month and adds $100 at the end of each month, when the interest is credited.
- (a) Find a recursive formula for the amount An in her account at the end of the nth month. (Include the interest credited for that month and her monthly deposit.)
- (b) Find the first five terms of the sequence An.
- (c) Use the pattern you observed in (b) to find a formula for An. [Hint: To find the pattern most easily, it’s best not to simplify the terms too much]
- (d) How much has she saved after 5 years?
(a)

The recursive formula for the amount
Answer to Problem 3P
The recursive formula for the amount
Explanation of Solution
Given:
Alice deposit $100 at the start of first month and then add $100 at the end of each month. The interest rate is 3% per year and interest compounded monthly.
Formula used:
The compound interest formula in given below,
Where, A is total amount after t years, r is the rate of interest per year and n is no of times interest is compounded per year
Calculation:
According to the given information the value of r is 3% or 0.03 and the value of n is 12. Alice add $100 at the end of the each month, so the amount after one month is calculated as follows,
Substitute 0.03 for r, 12 for n, 100 for P and
Add 100 and the total amount in first month after compounding the interest, to find the total amount after first month.
The new principle amount is
Substitute 0.03 for r, 12 for n,
Add 100 and the total amount in second month after compounding the interest, to find the total amount after second month.
The new principle amount is
Similarly, the principle amount after n month is
Therefore, the recursive formula for the amount
(b)

The first five terms of the sequence
Answer to Problem 3P
The first five terms of the sequence
Explanation of Solution
Given:
From part (a), the value of
Calculation:
The initial amount is $100. The value of first term
Substitute 1 for n in equation (2), to find the value of
Simplify the above expression to find the value of
Substitute 2 for n in equation (2), to find the value of
Simplify the above expression to find the value of
Substitute 3 for n in equation (2), to find the value of
Simplify the above expression to find the value of
Substitute 4 for n in equation (2), to find the value of
Simplify the above expression to find the value of
Therefore, the first five terms of the sequence
(c)

The formula for
Answer to Problem 3P
The formula for
Explanation of Solution
Given:
The first five terms of the sequence
Calculation:
The first five terms represents as shown below,
The second term is written as,
The third term is written as,
The fourth term is written as,
The fifth term is written as,
Similarly the general formula for
Therefore, the formula for
(d)

The total amount saved by Alice in 5 years.
Answer to Problem 3P
The total amount saved by Alice in 5 years is $6580.83.
Explanation of Solution
Given:
From part a the formula for
Where,
Calculation:
The total number of months in 5 years is 60.
Substitute 60 for n in equation (3), to find the value of total saved amount after 5 years.
Simplify the above expression,
Therefore, the total amount saved by Alice in 5 years is $6580.83.
Chapter 12 Solutions
Precalculus: Mathematics for Calculus - 6th Edition
- 4. Some psychologists contend that the number of facts of a certain type that are remembered after t hours is given by f(t)== 90t 951-90 Find the rate at which the number of facts remembered is changing after 1 hour and after 10 hours. Interpret.arrow_forward12:05 MA S 58 58. If f(x) = ci.metaproxy.org 25 2xon [0, 10] and n is a positive integer, then there is some Riemann sum Sthat equals the exact area under the graph of ƒ from x = Oto x = 10. 59. If the area under the graph of fon [a, b] is equal to both the left sum L, and the right sum Rfor some positive integer n, then fis constant on [a, b]. 60. If ƒ is a decreasing function on [a, b], then the area under the graph of fis greater than the left sum Land less than the right sum R₂, for any positive integer n. Problems 61 and 62 refer to the following figure showing two parcels of land along a river: River Parcel 2 Parcel 1 h(x) 500 ft 1,000 ft. Figure for 61 and 62 61. You want to purchase both parcels of land shown in the figure and make a quick check on their combined area. There is no equation for the river frontage, so you use the average of the left and right sums of rectangles covering the area. The 1,000-foot baseline is divided into 10 equal parts. At the end of each…arrow_forwardIf a snowball melts so that its surface area decreases at a rate of 10 cm²/min, find the rate (in cm/min) at which the diameter decreases when the diameter is 12 cm. (Round your answer to three decimal places.) cm/minarrow_forward
- 1) let X: N R be a sequence and let Y: N+R be the squence obtained from x by di scarding the first meN terms of x in other words Y(n) = x(m+h) then X converges to L If and only is y converges to L- 11) let Xn = cos(n) where nyo prove D2-1 that lim xn = 0 by def. h→00 ii) prove that for any irrational numbers ther exsist asquence of rational numbers (xn) converg to S.arrow_forward4.2 Product and Quotient Rules 1. 9(x)=125+1 y14+2 Use the product and/or quotient rule to find the derivative of each function. a. g(x)= b. y (2x-3)(x-1) c. y== 3x-4 √xarrow_forward4.2 Product and Quotient Rules 1. Use the product and/or quotient rule to find the derivative of each function. 2.5 a. g(x)=+1 y14+2 √x-1) b. y=(2x-3)(x-:arrow_forward
- 3. The total profit (in dollars) from selling x watches is P(x)=0.52x²-0.0002x². Find and interpret the following. a) P(100) b) P'(100)arrow_forward3. Find the slope and the equation of the tangent line to the graph of the given function at the given value of x. -4 f(x)=x-x³;x=2arrow_forward2. Find the equation of the tangent line to the graph of the given function at the given point. f(x)=(x+3)(2x²-6) at (1,-16)arrow_forward
- 6. Researchers who have been studying the alarming rate at which the level of the Dead Sea has been dropping have shown that the density d (x) (in g per cm³) of the Dead Sea brine during evaporation can be estimated by the function d(x)=1.66 0.90x+0.47x², where x is the fraction of the remaining brine, 0≤x≤1. a) Estimate the density of the brine when 60% of the brine remains. b) Find and interpret the instantaneous rate of change of the density when 60% of the brine remains.arrow_forward5. If g'(5) 10 and h'(5)=-4, find f'(5) for f(x)=4g(x)-2h(x)+3.arrow_forward2. Find each derivative. Write answers with positive exponents. a) Dx 9x -3 [97] b) f'(3) if f(x) = x²-5x² 8arrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning





