
Concept explainers
To Prove:

Explanation of Solution
Given information:
Use Mathematical induction to prove the above mentioned formula.
Concept used:
1.By using Mathematical induction technique we need to prove that this formula holds True for all natural numbers. The first step is to prove True for
2.Second step by using induction hypothesis of mathematical induction we assume for
3.Third step is we need to prove that above formula is True for
Proof:
First we need to prove the above formula is True for
Given formula is
Put
We get
Left hand side = 5
Right hand side =
So Left hand side = Right hand side
It True for
Let us assume it is True for
So
We need to prove it is True for
Left hand side =
Right hand side =
Left hand side = Right hand side
And hence the proof by Mathematical induction.
is True for all natural numbers
Given information:
Use Mathematical induction to prove the above mentioned formula.
Concept used:
1.By using Mathematical induction technique we need to prove that this formula holds True for all natural numbers. The first step is to prove True for
2.Second step by using induction hypothesis of mathematical induction we assume for
3.Third step is we need to prove that above formula is True for
Proof:
First we need to prove the above formula is True for
Given formula is
Put
We get
Left hand side = 1
Right hand side =
So Left hand side = Right hand side
It True for
Let us assume it is True for
So
We need to prove it is True for
Left hand side =
Right hand side =
Left hand side = Right hand side
And hence the proof by Mathematical induction.
Chapter 12 Solutions
Precalculus: Mathematics for Calculus - 6th Edition
- The spread of an infectious disease is often modeled using the following autonomous differential equation: dI - - BI(N − I) − MI, dt where I is the number of infected people, N is the total size of the population being modeled, ẞ is a constant determining the rate of transmission, and μ is the rate at which people recover from infection. Close a) (5 points) Suppose ẞ = 0.01, N = 1000, and µ = 2. Find all equilibria. b) (5 points) For the equilbria in part a), determine whether each is stable or unstable. c) (3 points) Suppose ƒ(I) = d. Draw a phase plot of f against I. (You can use Wolfram Alpha or Desmos to plot the function, or draw the dt function by hand.) Identify the equilibria as stable or unstable in the graph. d) (2 points) Explain the biological meaning of these equilibria being stable or unstable.arrow_forwardFind the indefinite integral. Check Answer: 7x 4 + 1x dxarrow_forwardshow sketcharrow_forward
- Find the indefinite integral. Check Answer: 7x 4 + 1x dxarrow_forwardQuestion 1: Evaluate the following indefinite integrals. a) (5 points) sin(2x) 1 + cos² (x) dx b) (5 points) t(2t+5)³ dt c) (5 points) √ (In(v²)+1) 4 -dv ขarrow_forwardFind the indefinite integral. Check Answer: In(5x) dx xarrow_forward
- Find the indefinite integral. Check Answer: 7x 4 + 1x dxarrow_forwardHere is a region R in Quadrant I. y 2.0 T 1.5 1.0 0.5 0.0 + 55 0.0 0.5 1.0 1.5 2.0 X It is bounded by y = x¹/3, y = 1, and x = 0. We want to evaluate this double integral. ONLY ONE order of integration will work. Good luck! The dA =???arrow_forward43–46. Directions of change Consider the following functions f and points P. Sketch the xy-plane showing P and the level curve through P. Indicate (as in Figure 15.52) the directions of maximum increase, maximum decrease, and no change for f. ■ 45. f(x, y) = x² + xy + y² + 7; P(−3, 3)arrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning





