Concept explainers
(a)
To find: The total distance a ball falls in 6 s.
(a)
Answer to Problem 66E
The total distance a ball falls in 6 s is 576 ft.
Explanation of Solution
The distance is increasing with every second.
Here the arithmetic regression is increasing.
Given:
Distance covered by freely falling ball in the first second is 16 ft.
Distance covered by freely falling ball in the next second is 48 ft
Distance covered by freely falling ball in the next second is 80 ft
Total time is 6 s.
Formulas used:
The nth partial sum of an arithmetic sequence is,
Calculation:
Due to the gravitational pull the ball falls with different distance in every second.
In the first second ball falls 16 ft.
So, first term of an arithmetic progression is 16.
In the next second ball falls 48 ft.
So, second term of an arithmetic progression is 48.
And in the next second ball falls 80 ft.
So, third term of an arithmetic progression is 80.
Hence, an arithmetic sequence is formed,
The common difference is calculated as,
So the common difference is 32.
And total time is 6 s, so, value of n is 6.
Substitute 16 for a, 32 for d and 6 for n in equation (1) to find the total distance a ball falls in 6 s.
Thus, the total distance a ball falls in 6 s is 576 ft.
(b)
To find: A formula for the total distance a ball falls in n seconds.
(b)
Answer to Problem 66E
The formula for the total distance a ball falls in n seconds is
Explanation of Solution
Given:
Distance covered by freely falling ball in the first second is 16 ft.
Distance covered by freely falling ball in the next second is 48 ft
Distance covered by freely falling ball in the next second is 80 ft
Calculation:
The first term of an arithmetic progression is denoted by a and the common difference is denoted by d.
The sum for an arithmetic progression is denoted by
Now the total distance a ball falls in n seconds is calculated by adding all the distance covered by the ball in each second.
Thus, the formula for the total distance a ball falls in n seconds is
Chapter 12 Solutions
Precalculus: Mathematics for Calculus - 6th Edition
- 53,85÷1,5=arrow_forward3. In the space below, describe in what ways the function f(x) = -2√x - 3 has been transformed from the basic function √x. The graph f(x) on the coordinate plane at right. (4 points) -4 -&- -3 -- -2 4 3- 2 1- 1 0 1 2 -N -1- -2- -3- -4- 3 ++ 4arrow_forward2. Suppose the graph below left is the function f(x). In the space below, describe what transformations are occuring in the transformed function 3ƒ(-2x) + 1. The graph it on the coordinate plane below right. (4 points)arrow_forward
- 1 1. Suppose we have the function f(x) = = and then we transform it by moving it four units to the right and six units down, reflecting it horizontally, and stretching vertically by 5 units. What will the formula of our new function g(x) be? (2 points) g(x) =arrow_forwardSuppose an oil spill covers a circular area and the radius, r, increases according to the graph shown below where t represents the number of minutes since the spill was first observed. Radius (feet) 80 70 60 50 40 30 20 10 0 r 0 10 20 30 40 50 60 70 80 90 Time (minutes) (a) How large is the circular area of the spill 30 minutes after it was first observed? Give your answer in terms of π. square feet (b) If the cost to clean the oil spill is proportional to the square of the diameter of the spill, express the cost, C, as a function of the radius of the spill, r. Use a lower case k as the proportionality constant. C(r) = (c) Which of the following expressions could be used to represent the amount of time it took for the radius of the spill to increase from 20 feet to 60 feet? r(60) - r(20) Or¹(80-30) r(80) - r(30) r-1(80) - r−1(30) r-1(60) - r¹(20)arrow_forward6. Graph the function f(x)=log3x. Label three points on the graph (one should be the intercept) with corresponding ordered pairs and label the asymptote with its equation. Write the domain and range of the function in interval notation. Make your graph big enough to see all important features.arrow_forward
- Find the average value gave of the function g on the given interval. gave = g(x) = 8√√x, [8,64] Need Help? Read It Watch Itarrow_forward3. Mary needs to choose between two investments: One pays 5% compounded annually, and the other pays 4.9% compounded monthly. If she plans to invest $22,000 for 3 years, which investment should she choose? How much extra interest will she earn by making the better choice? For all word problems, your solution must be presented in a sentence in the context of the problem.arrow_forward4 πT14 Sin (X) 3 Sin(2x) e dx 1716 S (sinx + cosx) dxarrow_forward
- Let g(x) = f(t) dt, where f is the function whose graph is shown. 3 y f(t) MA t (a) At what values of x do the local maximum and minimum values of g occur? Xmin = Xmin = Xmax = Xmax = (smaller x-value) (larger x-value) (smaller x-value) (larger x-value) (b) Where does g attain its absolute maximum value? x = (c) On what interval is g concave downward? (Enter your answer using interval notation.)arrow_forward2. Graph the function f(x)=e* −1. Label three points on the graph (one should be the intercept) with corresponding ordered pairs (round to one decimal place) and label the asymptote with its equation. Write the domain and range of the function in interval notation. Make your graph big enough to see all important features. You may show the final graph only.arrow_forwardansewer both questions in a very detailed manner . thanks!arrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning