EP PHYSICS F/SCI.+ENGR.W/MOD..-MOD MAST
4th Edition
ISBN: 9780133899634
Author: GIANCOLI
Publisher: PEARSON CO
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 12, Problem 26P
(II) A 0.75-kg sheet hangs from a massless clothesline as shown in Fig. 12–63. The clothesline on either side of the sheet makes an angle of 3.5° with the horizontal. Calculate the tension in the clothesline on either side of the sheet. Why is the tension so much greater than the weight of the sheet?
FIGURE 12–63 Problem 26.
Expert Solution & Answer
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Students have asked these similar questions
In the Donkey Kong Country video games you often get around by shooting yourself out of barrel cannons. Donkey Kong wants to launch out of one barrel and land in a different one that is a distance in x of 9.28 m away. To do so he launches himself at a velocity of 22.6 m/s at an angle of 30.0°. At what height does the 2nd barrel need to be for Donkey Kong to land in it? (measure from the height of barrel 1, aka y0=0)
For which value of θ is the range of a projectile fired from ground level a maximum?
90° above the horizontal
45° above the horizontal
55° above the horizontal
30° above the horizontal
60° above the horizontal
A map from The Legend of Zelda: The Breath of the Wild shows that Zora's Domain is 7.55 km in a direction 25.0° north of east from Gerudo Town. The same map shows that the Korok Forest is 3.13 km in a direction 55.0° west of north from Zora's Domain. The figure below shows the location of these three places. Modeling Hyrule as flat, use this information to find the displacement from Gerudo Town to Korok Forest. What is the magnitude of the displacement? Find the angle of the displacement. Measure the angle in degrees north of east of Gerudo Town.
Chapter 12 Solutions
EP PHYSICS F/SCI.+ENGR.W/MOD..-MOD MAST
Ch. 12.1 - For simplicity, we wrote the equation in Example...Ch. 12.2 - We did not need to use the force equation to solve...Ch. 12.2 - CHAPTER-OPENING QUESTIONGuess Now! The diving...Ch. 12.2 - Why is it reasonable to ignore friction along the...Ch. 12.4 - Two steel wires have the same length and are under...Ch. 12 - Describe several situations in which an object is...Ch. 12 - A bungee jumper momentarily comes to rest at the...Ch. 12 - Prob. 3QCh. 12 - Your doctors scale has arms on which weights slide...Ch. 12 - A ground retaining wall is shown in Fig. 1240a....
Ch. 12 - Can the sum of the torques on an object be zero...Ch. 12 - A ladder, leaning against a wall, makes a 60 angle...Ch. 12 - A uniform meter stick supported at the 25-cm mark...Ch. 12 - Prob. 9QCh. 12 - Prob. 10QCh. 12 - Place yourself facing the edge of an open door....Ch. 12 - Prob. 12QCh. 12 - Prob. 13QCh. 12 - Which of the configurations of brick, (a) or (b)...Ch. 12 - Name the type of equilibrium for each position of...Ch. 12 - Is the Youngs modulus for a bungee cord smaller or...Ch. 12 - Examine how a pair of scissors or shears cuts...Ch. 12 - Materials such as ordinary concrete and stone are...Ch. 12 - (I) Three forces are applied to a tree sapling, as...Ch. 12 - (I) Approximately what magnitude force, FM, must...Ch. 12 - Prob. 3PCh. 12 - (I) A tower crane (Fig. 1248a) must always be...Ch. 12 - (II) Calculate the forces FA and FB that the...Ch. 12 - Prob. 6PCh. 12 - (II) The two trees in Fig. 1250 are 6.6 m apart. A...Ch. 12 - Prob. 8PCh. 12 - Prob. 9PCh. 12 - Prob. 10PCh. 12 - (II) Find the tension in the two cords shown in...Ch. 12 - (II) Find the tension in the two wires supporting...Ch. 12 - Prob. 13PCh. 12 - (II) The force required to pull the cork out of...Ch. 12 - (II) Calculate and FA and FB for the beam shown in...Ch. 12 - Prob. 16PCh. 12 - Prob. 17PCh. 12 - (II) Three children are trying to balance on a...Ch. 12 - (II) The Achilles tendon is attached to the rear...Ch. 12 - (II) A shop sign weighing 215 N is supported by a...Ch. 12 - (II) A traffic light hangs from a pole as shown in...Ch. 12 - (II) A uniform steel beam has a mass of 940 kg. On...Ch. 12 - (II) Two wires run from the top of a pole 2.6 m...Ch. 12 - (II) A large 62.0-kg board is propped at a 45...Ch. 12 - (II) Repeat Problem 24 assuming the coefficient of...Ch. 12 - (II) A 0.75-kg sheet hangs from a massless...Ch. 12 - (II) A uniform rod AB of length 5.0 m and mass M =...Ch. 12 - (III) A 56.0-kg person stands 2.0 m from the...Ch. 12 - (III) A door 2.30 m high and 1.30 m wide has a...Ch. 12 - (III) A cubic crate of side s = 2.0 m is...Ch. 12 - (III) A refrigerator is approximately a uniform...Ch. 12 - (III) A uniform ladder of mass m and length leans...Ch. 12 - Prob. 33PCh. 12 - (I) A nylon string on a tennis racket is under a...Ch. 12 - (I) A marble column of cross-sectional area 1.4 m2...Ch. 12 - (I) By how much is the column in Problem 35...Ch. 12 - (I) A sign (mass 1700 kg) hangs from the end of a...Ch. 12 - (II) How much pressure is needed to compress the...Ch. 12 - Prob. 39PCh. 12 - (II) At depths of 2000 m in the sea, the pressure...Ch. 12 - (III) A pole projects horizontally from the front...Ch. 12 - (I) The femur bone in the human leg has a minimum...Ch. 12 - (II) (a) What is the maximum tension possible in a...Ch. 12 - (II) If a compressive force of 3.3 104 N is...Ch. 12 - (II) (a) What is the minimum cross-sectional area...Ch. 12 - (II) Assume the supports of the uniform cantilever...Ch. 12 - (II) An iron bolt is used to connect two iron...Ch. 12 - (II) A steel cable is to support an elevator whose...Ch. 12 - (II) A heavy load Mg = 66.0 kN hangs at point E of...Ch. 12 - (II) Figure 1271 shows a simple truss that carries...Ch. 12 - (II) (a) What minimum cross-sectional area must...Ch. 12 - (II) onsider again Example 1211 but this time...Ch. 12 - (III) The truss shown in Fig. 1272 supports a...Ch. 12 - (III) Suppose in Example 1211, a 23-ton truck (m =...Ch. 12 - (III) For the Pratt truss shown in Fig. 1273,...Ch. 12 - (II) How high must a pointed arch be if it is to...Ch. 12 - The mobile in Fig. 1274 is in equilibrium. Object...Ch. 12 - A tightly stretched high wire is 36 m long. It...Ch. 12 - What minimum horizontal force F is needed to pull...Ch. 12 - A 28-kg round table is supported by three legs...Ch. 12 - When a wood shelf of mass 6.6 kg is fastened...Ch. 12 - Prob. 62GPCh. 12 - The center of gravity of a loaded truck depends on...Ch. 12 - In Fig. 1279, consider the right-hand...Ch. 12 - Assume that a single-span suspension bridge such...Ch. 12 - When a mass of 25 kg is hung from the middle of a...Ch. 12 - The forces acting on a 77,000-kg aircraft flying...Ch. 12 - A uniform flexible steel cable of weight mg is...Ch. 12 - A 20.0-m-long uniform beam weighing 650 N rests on...Ch. 12 - A cube of side l rests on a rough floor. It is...Ch. 12 - A 65.0-kg painter is on a uniform 25-kg scaffold...Ch. 12 - A man doing push-ups pauses in the position shown...Ch. 12 - A 23-kg sphere rests between two smooth planes as...Ch. 12 - A 15.0-kg ball is supported from the ceiling by...Ch. 12 - Parachutists whose chutes have failed to open have...Ch. 12 - A steel wire 2.3 mm in diameter stretches by...Ch. 12 - A 2500-kg trailer is attached to a stationary...Ch. 12 - Prob. 78GPCh. 12 - A 25-kg object is being lifted by pulling on the...Ch. 12 - A uniform 6.0-m-long ladder of mass 16.0 kg leans...Ch. 12 - There is a maximum height of a uniform vertical...Ch. 12 - A 95,000-kg train locomotive starts across a...Ch. 12 - A 23.0-kg backpack is suspended midway between two...Ch. 12 - A uniform beam of mass M and length l is mounted...Ch. 12 - Two identical, uniform beams are symmetrically set...Ch. 12 - If 35 kg is the maximum mass m that a person can...Ch. 12 - (a) Estimate the magnitude of the force FM the...Ch. 12 - One rod of the square frame shown in Fig. 1295...Ch. 12 - A steel rod of radius R = 15 cm and length 0,...Ch. 12 - A home mechanic wants to raise the 280-kg engine...Ch. 12 - A 2.0-m-high box with a 1.0-m-squarc base is moved...Ch. 12 - You are on a pirate ship and being forced to walk...Ch. 12 - A uniform sphere of weight mg and radius r0 is...Ch. 12 - Use the method of joints to determine the force in...Ch. 12 - A uniform ladder of mass m and length leans at an...Ch. 12 - In a mountain-climbing technique called the...Ch. 12 - (III) A metal cylinder has an original diameter of...Ch. 12 - (III) Two springs, attached by a rope, are...
Additional Science Textbook Solutions
Find more solutions based on key concepts
4. How do gross anatomy and microscopic anatomy differ?
Human Anatomy & Physiology (2nd Edition)
Explain why 92% of 2,4-pemtanedione exists as the enol tautomer in hexane but only 15% of this compound exists ...
Organic Chemistry (8th Edition)
30. Drosophila has a diploid chromosome number of 2n = 8, which includes one pair of sex chromosomes (XX in fem...
Genetic Analysis: An Integrated Approach (3rd Edition)
1.3 Obtain a bottle of multivitamins and read the list of ingredients. What are four chemicals from the list?
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Use the following graph to answer questions 3 and 4. 3. Which of the lines best depicts the log phase of a ther...
Microbiology: An Introduction
Which type of cartilage is most plentiful in the adult body?
Anatomy & Physiology (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Race car driver is cruising down the street at a constant speed of 28.9 m/s (~65 mph; he has a “lead” foot) when the traffic light in front of him turns red. a) If the driver’s reaction time is 160 ms, how far does he and his car travel down the road from the instant he sees the light change to the instant he begins to slow down? b) If the driver’s combined reaction and movement time is 750 ms, how far do he and his car travel down the road from the instant he sees the light change to the instant he slams on her brakes and car begins to slow down? c) If the driver’s average rate of acceleration is -9.5 m/s2 as he slows down, how long does it take him to come to a stop (use information about his speed of 28.9 m/s but do NOT use his reaction and movement time in this computation)? Please answer parts a-c. Show all work. For each question draw a diagram to show the vector/s. Show all the step and provide units in the answers. Provide answer to 2 decimal places unless stated otherwise.arrow_forwardBelow you will find 100 m split times for the American and France men’s 4x100 meter free style relay race during the 2008 Beijing Summer Olympics). Answer questions a-d. a) What was the total race time for each team, in seconds? b) Which team won the race? What was the difference in the teams’ times? c) What was the average speed for each team for the whole race? (provide answer to 3 decimal places). d) Calculate the average speed for each swimmer and report the results in a table like the one above. Remember to show the calculation steps. (provide answer to 3 decimal places). PLEASE SHOW ALL WORK AND STEPS.arrow_forwardNeed complete solution Pleasearrow_forward
- Below you will find 100 m split times for the American and France men’s 4x100 meter free style relay race during the 2008 Beijing Summer Olympics). Fill out the chart below. Calculate average speed per split (m/s). Show all work.arrow_forwardThe magnitude of vector →A i s 261. m and points in the direction 349.° counterclockwise from the positive x-axis. Calculate the x-component of this vector . Calculate the y-component of this vector.arrow_forwardNo chatgpt pls will upvotearrow_forward
- 4.4 A man is dragging a trunk up the loading ramp of a mover's truck. The ramp has a slope angle of 20.0°, and the man pulls upward with a force F whose direction makes an angle of 30.0° 75.0° with the ramp (Fig. E4.4). (a) How large a force F is necessary for the component Fx parallel to the ramp to be 90.0 N? (b) How large will the component Fy perpendicular to the ramp be then? Figure E4.4 30.0 20.0°arrow_forward1. * A projectile is shot from a launcher at an angle e, with an initial velocity magnitude v., from a point even with a tabletop. The projectile lands on the tabletop a horizontal distance R (the "range") away from where it left the launcher. Set this up as a formal problem, and solve for vo (i.e., determine an expression for Vo in terms of only R, 0., and g). Your final equation will be called Equation 1.arrow_forward2. A projectile is shot from a launcher at an angle 0,, with an initial velocity magnitude vo, from a point even with a tabletop. The projectile hits an apple atop a child's noggin (see Figure 1). The apple is a height y above the tabletop, and a horizontal distance x from the launcher. Set this up as a formal problem, and solve for x. That is, determine an expression for x in terms of only v₁, o,y and g. Actually, this is quite a long expression. So, if you want, you can determine an expression for x in terms of v., 0., and time t, and determine another expression for timet (in terms of v., 0., y and g) that you will solve and then substitute the value of t into the expression for x. Your final equation(s) will be called Equation 3 (and Equation 4).arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168277/9781938168277_smallCoverImage.gif)
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168000/9781938168000_smallCoverImage.gif)
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
![Text book image](https://www.bartleby.com/isbn_cover_images/9780078807213/9780078807213_smallCoverImage.gif)
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133104261/9781133104261_smallCoverImage.gif)
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133939146/9781133939146_smallCoverImage.gif)
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9780534408961/9780534408961_smallCoverImage.gif)
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Static Equilibrium: concept; Author: Jennifer Cash;https://www.youtube.com/watch?v=0BIgFKVnlBU;License: Standard YouTube License, CC-BY