In a mountain-climbing technique called the “Tyrolean traverse,” a rope is anchored on both ends (to rocks or strong trees) across a deep chasm, and then a climber traverses the rope while attached by a sling as in Fig. 12–102. This technique generates tremendous forces in the rope and anchors, so a basic understanding of physics is crucial for safety. A typical climbing rope can undergo a tension force of perhaps 29 kN before breaking, and a “safely factor” of 10 is usually recommended. The length of rope used in the Tyrolean traverse must allow for some “sag” to remain in the recommended safety range. Consider a 75-kg climber at the center of a Tyrolean traverse, spanning a 25-m chasm. ( a ) To be within its recommended safety range, what minimum distance x must the rope sag? ( b ) If the Tyrolean traverse is set up incorrectly so that the rope sags by only one-fourth the distance found in ( a ), determine the tension in the rope. Will the rope break? FIGURE 12–102 Problem 96.
In a mountain-climbing technique called the “Tyrolean traverse,” a rope is anchored on both ends (to rocks or strong trees) across a deep chasm, and then a climber traverses the rope while attached by a sling as in Fig. 12–102. This technique generates tremendous forces in the rope and anchors, so a basic understanding of physics is crucial for safety. A typical climbing rope can undergo a tension force of perhaps 29 kN before breaking, and a “safely factor” of 10 is usually recommended. The length of rope used in the Tyrolean traverse must allow for some “sag” to remain in the recommended safety range. Consider a 75-kg climber at the center of a Tyrolean traverse, spanning a 25-m chasm. ( a ) To be within its recommended safety range, what minimum distance x must the rope sag? ( b ) If the Tyrolean traverse is set up incorrectly so that the rope sags by only one-fourth the distance found in ( a ), determine the tension in the rope. Will the rope break? FIGURE 12–102 Problem 96.
In a mountain-climbing technique called the “Tyrolean traverse,” a rope is anchored on both ends (to rocks or strong trees) across a deep chasm, and then a climber traverses the rope while attached by a sling as in Fig. 12–102. This technique generates tremendous forces in the rope and anchors, so a basic understanding of physics is crucial for safety. A typical climbing rope can undergo a tension force of perhaps 29 kN before breaking, and a “safely factor” of 10 is usually recommended. The length of rope used in the Tyrolean traverse must allow for some “sag” to remain in the recommended safety range. Consider a 75-kg climber at the center of a Tyrolean traverse, spanning a 25-m chasm. (a) To be within its recommended safety range, what minimum distance x must the rope sag? (b) If the Tyrolean traverse is set up incorrectly so that the rope sags by only one-fourth the distance found in (a), determine the tension in the rope. Will the rope break?
In an electron gun, electrons are accelerated through a region with an electric field of magnitude 1.5 × 104 N/C for a distance of 2.5 cm. If the electrons start from rest, how fast are they moving after traversing the gun?
Please solve and answer this problem correctly please. Thank you!!
Genetic Analysis: An Integrated Approach (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.