
Concept explainers
(a)
Interpretation: The net ionic equation of the given reaction should be determined.
Concept Introduction: The solubility of ionic compounds is high in polar solvents such as water. This is because the ions present in it are strongly attracted to the molecules of the polar solvent. If there is any common ion in the ionic compound and the solvent, the solubility of ionic compound in that solvent decreases.
There are following rules of solubility of an ionic compound in the water:
- The salts of group 1 elements (alkali metals) are soluble. Also, salts of ammonium ion are soluble.
- The salts of nitrate ion are commonly soluble.
- The salts of chloride, bromide and iodide ions are commonly soluble. But halide salts of silver ion, lead ion and mercury ions are insoluble.
- Most of the silver salts are insoluble but silver nitrate and silver acetate are generally soluble.
- Most of the sulphate salts are soluble but calcium sulphate, barium sulphate, silver sulphate and strontium sulphate are insoluble.
- Most of the hydroxide salts are slightly soluble but that of group 1 elements are soluble. Hydroxide salts of
transition metals and aluminium ion are insoluble. Therefore, iron hydroxide, aluminium hydroxide and cobalt hydroxide are insoluble. - The sulphides of transition metals are strongly insoluble such as cadmium sulphide, iron sulphide, zinc sulphide and silver sulphide. The salts of arsenic, antimony, bismuth and lead are also insoluble.
- Carbonates are insoluble.
- Chromates are insoluble.
- Phosphates are also insoluble such as calcium phosphate and silver phosphate.
- Fluorides are also insoluble such as barium fluoride, magnesium fluoride and lead fluoride.
(b)
Interpretation: The net ionic equation of the given reaction should be determined.
Concept Introduction: The solubility of ionic compounds is high in polar solvents such as water. This is because the ions present in it are strongly attracted to the molecules of the polar solvent. If there is any common ion in the ionic compound and the solvent, the solubility of ionic compound in that solvent decreases.
There are following rules of solubility of an ionic compound in the water:
- The salts of group 1 elements (alkali metals) are soluble. Also, salts of ammonium ion are soluble.
- The salts of nitrate ion are commonly soluble.
- The salts of chloride, bromide and iodide ions are commonly soluble. But halide salts of silver ion, lead ion and mercury ions are insoluble.
- Most of the silver salts are insoluble but silver nitrate and silver acetate are generally soluble.
- Most of the sulphate salts are soluble but calcium sulphate, barium sulphate, silver sulphate and strontium sulphate are insoluble.
- Most of the hydroxide salts are slightly soluble but that of group 1 elements are soluble. Hydroxide salts of transition metals and aluminium ion are insoluble. Therefore, iron hydroxide, aluminium hydroxide and cobalt hydroxide are insoluble.
- The sulphides of transition metals are strongly insoluble such as cadmium sulphide, iron sulphide, zinc sulphide and silver sulphide. The salts of arsenic, antimony, bismuth and lead are also insoluble.
- Carbonates are insoluble.
- Chromates are insoluble.
- Phosphates are also insoluble such as calcium phosphate and silver phosphate.
- Fluorides are also insoluble such as barium fluoride, magnesium fluoride and lead fluoride.
(c)
Interpretation: The net ionic equation of the given reaction should be determined.
Concept Introduction: The solubility of ionic compounds is high in polar solvents such as water. This is because the ions present in it are strongly attracted to the molecules of the polar solvent. If there is any common ion in the ionic compound and the solvent, the solubility of ionic compound in that solvent decreases.
There are following rules of solubility of an ionic compound in the water:
- The salts of group 1 elements (alkali metals) are soluble. Also, salts of ammonium ion are soluble.
- The salts of nitrate ion are commonly soluble.
- The salts of chloride, bromide and iodide ions are commonly soluble. But halide salts of silver ion, lead ion and mercury ions are insoluble.
- Most of the silver salts are insoluble but silver nitrate and silver acetate are generally soluble.
- Most of the sulphate salts are soluble but calcium sulphate, barium sulphate, silver sulphate and strontium sulphate are insoluble.
- Most of the hydroxide salts are slightly soluble but that of group 1 elements are soluble. Hydroxide salts of transition metals and aluminium ion are insoluble. Therefore, iron hydroxide, aluminium hydroxide and cobalt hydroxide are insoluble.
- The sulphides of transition metals are strongly insoluble such as cadmium sulphide, iron sulphide, zinc sulphide and silver sulphide. The salts of arsenic, antimony, bismuth and lead are also insoluble.
- Carbonates are insoluble.
- Chromates are insoluble.
- Phosphates are also insoluble such as calcium phosphate and silver phosphate.
- Fluorides are also insoluble such as barium fluoride, magnesium fluoride and lead fluoride.
(d)
Interpretation: The net ionic equation of the given reaction should be determined.
Concept Introduction: The solubility of ionic compounds is high in polar solvents such as water. This is because the ions present in it are strongly attracted to the molecules of the polar solvent. If there is any common ion in the ionic compound and the solvent, the solubility of ionic compound in that solvent decreases.
There are following rules of solubility of an ionic compound in the water:
- The salts of group 1 elements (alkali metals) are soluble. Also, salts of ammonium ion are soluble.
- The salts of nitrate ion are commonly soluble.
- The salts of chloride, bromide and iodide ions are commonly soluble. But halide salts of silver ion, lead ion and mercury ions are insoluble.
- Most of the silver salts are insoluble but silver nitrate and silver acetate are generally soluble.
- Most of the sulphate salts are soluble but calcium sulphate, barium sulphate, silver sulphate and strontium sulphate are insoluble.
- Most of the hydroxide salts are slightly soluble but that of group 1 elements are soluble. Hydroxide salts of transition metals and aluminium ion are insoluble. Therefore, iron hydroxide, aluminium hydroxide and cobalt hydroxide are insoluble.
- The sulphides of transition metals are strongly insoluble such as cadmium sulphide, iron sulphide, zinc sulphide and silver sulphide. The salts of arsenic, antimony, bismuth and lead are also insoluble.
- Carbonates are insoluble.
- Chromates are insoluble.
- Phosphates are also insoluble such as calcium phosphate and silver phosphate.
- Fluorides are also insoluble such as barium fluoride, magnesium fluoride and lead fluoride.

Want to see the full answer?
Check out a sample textbook solution
Chapter 12 Solutions
EP BASIC CHEMISTRY-STANDALONE ACCESS
- Synthesize 2-Ethyl-3-methyloxirane from dimethyl(propyl)sulfonium iodide using the necessary organic or inorganic reagents. Draw the structures of the compounds.arrow_forwardSynthesize 2-Hydroxy-2-phenylacetonitrile from phenylmethanol using the necessary organic or inorganic reagents. Draw the structures of the compounds.arrow_forwardSynthesize N-Methylcyclohexylamine from cyclohexanol using the necessary organic or inorganic reagents. Draw the structures of the compounds.arrow_forward
- Synthesize N-Methylcyclohexylamine from cyclohexanol using the necessary organic or inorganic reagents. Draw the structures of the compounds.arrow_forwardIf possible, please provide the formula of the compound 3,3-dimethylbut-2-enal.arrow_forwardSynthesize 1,4-dibromobenzene from acetanilide (N-phenylacetamide) using the necessary organic or inorganic reagents. Draw the structures of the compounds.arrow_forward
- Indicate the products obtained by mixing (3-oxo-3-phenylpropyl)triphenylphosphonium bromide with sodium hydride.arrow_forwardWe mix N-ethyl-2-hexanamine with excess methyl iodide and followed by heating with aqueous Ag2O. Indicate the major products obtained.arrow_forwardIndicate the products obtained by mixing acetophenone with iodine and NaOH.arrow_forward
- Indicate the products obtained by mixing 2-Propanone and ethyllithium and performing a subsequent acid hydrolysis.arrow_forwardIndicate the products obtained if (E)-2-butenal and 3-oxo-butanenitrile are mixed with sodium ethoxide in ethanol.arrow_forwardQuestion 3 (4 points), Draw a full arrow-pushing mechanism for the following reaction Please draw all structures clearly. Note that this intramolecular cyclization is analogous to the mechanism for halohydrin formation. COH Br + HBr Brarrow_forward
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co


