Concept explainers
Calculate the grams or milliliters of solute needed to prepare the following:
a.
b.
c.
Want to see the full answer?
Check out a sample textbook solutionChapter 12 Solutions
EP BASIC CHEMISTRY-STANDALONE ACCESS
- Calculate the mole fraction of each solute and solvent: (a) 0.710 kg of sodium carbonate (washing soda), Na2CO3, in 10.0 kg of water—a saturated solution at 0 C (b) 125 g of NH4NO3 in 275 g of water—a mixture used to make an instant ice pack (c) 25 g of CI2 in 125 g of dichloromethane, CH2CI2 (d) 0.372 g of tetrahydropyridine, C5H9N, in 125 g of chloroform, CHCI3arrow_forwardA 12-oz (355-mL) Pepsi contains 38.9 mg caffeine (molar mass = 194.2 g/mol). Assume that the Pepsi, mainly water, has a density of 1.01 g/mL. For such a Pepsi, calculate: (a) its caffeine concentration in ppm; (b) its molarity of caffeine; and (c) the molality of caffeine.arrow_forwardAnalysis of a compound gave 39.50% C, 2.21% H, and 58.30% Cl. When 0.855 g of this solid was dissolved in 7.50 g of naphthalene, the solution had a freezing point of 78.0C. The pure solvent freezes at 80.0C; its molal freezing point constant is 6.8C/m. a What is the molecular formula of the compound? b What is its molecular weight to the nearest 0.1 g?arrow_forward
- Calculate the percent by mass of solute in each of the following solutions. 5.00 g of calcium chloride dissolved in 95.0 g of water 1.00 g of calcium chloride dissolved in 19.0 g of water 15.0 g of calcium chloride dissolved in 285 g of water 2.00 mg of calcium chloride dissolved in 0.0380 g of waterarrow_forwardThe Henry's law constant for the solubility of argon gas in water is 1.0103M/atm at 30C. (a) Express the constant in M/mm Hg. (b) If the partial pressure of argon gas at 30C is 693 mm Hg, what is the concentration (in M) of the dissolved argon gas at 30C? (c) How many grams of argon gas can be dissolved in 29 L of water at 693 mm Hg and 30C? (Ignore the partial pressure of water.)arrow_forwardA gaseous solute dissolves in water. The solution process has H=15 kJ. Its solubility at 22C and 6.00 atm is 0.0300 M. Would you expect the solubility to be greater or less at (a) 22C and 1 atm? (a) 18C and 6 atm? (a) 15C and 10 atm? (a) 35C and 3 atm?arrow_forward
- Butylated hydroxytoluene (BHT) is used as an antioxidant in processed foods. (It prevents fats and oils from becoming rancid.) A solution of 2.500 g of BHT in 100.0 g of benzene had a freezing point of 4.880C. What is the molecular weight of BHT?arrow_forwardConcentrated hydrochloric acid contains 1.00 mol HCl dissolved in 3.31 mol H2O. What is the mole fraction of HCl in concentrated hydrochloric acid? What is the molal concentration of HCl?arrow_forwardHow many grams of lactose must be added to 655 g of water in order to prepare each of the following percent-by-mass concentrations of aqueous lactose solution? a. 0.50% b. 2.00% c. 10.0% d. 25.0%arrow_forward
- You have read that adding a solute to a solvent can both increase the boiling point and decrease the freezing point. A friend of yours explains it to you like this: The solute and solvent can be like salt in water. The salt gets in the way of freezing in that it blocks the water molecules from joining together. The salt acts like a strong bond holding the water molecules together so that it is harder to boil. What do you say to your friend?arrow_forwardSodium chloride (NaCl) is commonly used to melt ice on roads during the winter. Calcium chloride (CaCl2) is sometimes used for this purpose too. Let us compare the effectiveness of equal masses of these two compounds in lowering the freezing point of water, by calculating the freezing point depression of solutions containing 200. g of each salt in 1.00 kg of water. (An advantage of CaCl2 is that it acts more quickly because it is hygroscopic, that is. it absorbs moisture from the air to give a solution and begin the process. A disadvantage is that this compound is more costly.)arrow_forwardCalculate the molality of each of the following solutions: (a) 0.710 kg of sodium carbonate (washing soda), Na2CO3, in 10.0 kg of water—a saturated solution at 0C (b) 125 g of NH4NO3 in 275 g of water—a mixture used to make an instant ice pack (c) 25 g of CI2 in 125 g of dichloromethane, CH2CI2 (d) 0.372 g of tetrahydropyridine, C5H9N, in 125 g of chloroform, CHCI3arrow_forward
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning