Principles of Geotechnical Engineering (MindTap Course List)
9th Edition
ISBN: 9781305970939
Author: Braja M. Das, Khaled Sobhan
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 12, Problem 12.9P
To determine
Find the major principal stress
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A triaxial shear test was performed on a well-drained sand sample. The normal stress on the failure plane and the shear stress on the failure plane, at failure were determined to be 6100 psf and 4600 psf, respectively.
a. Determine the angle of internal friction of the sand?
b. Determine the angle of the failure plane?
c. Determine the maximum principal stress?
Please answer this asap. For upvote. Thank you very much
Triaxial tests performed on samples of aeolin sand. The failure conditions in terms of effective
stress are (ov, 0h) = (515, 100), (1250, 200), (3500, 400), and (5325, 800) kPa. Using (s, t)
space, determine the cohesion and friction angle. What is the orientation of the major principal
stress with respect to the failure plane? Determine this graphically.
A sand sample is subjected to direct shear testing. Two tests areperformed. For test 1, The sample shears at a stress of 2500 psf whenthe normal stress is 4000 psf.Test 2, The sample shears at a stress of 3500 psf when the normalstress is 6000 psf.
Determine the following:a) Angle of Internal frictionb) Value of cohesionc) Compute the shear stress at a depth of 12 ft. if the unit weight ofthe soil is 150 pcf
Chapter 12 Solutions
Principles of Geotechnical Engineering (MindTap Course List)
Ch. 12 - Prob. 12.1PCh. 12 - Prob. 12.2PCh. 12 - Prob. 12.3PCh. 12 - Prob. 12.4PCh. 12 - Prob. 12.5PCh. 12 - Prob. 12.6PCh. 12 - Prob. 12.7PCh. 12 - Prob. 12.8PCh. 12 - Prob. 12.9PCh. 12 - Prob. 12.10P
Ch. 12 - Prob. 12.11PCh. 12 - Prob. 12.12PCh. 12 - Prob. 12.13PCh. 12 - Following are the results of...Ch. 12 - Prob. 12.15PCh. 12 - Prob. 12.16PCh. 12 - Prob. 12.17PCh. 12 - Prob. 12.18PCh. 12 - Prob. 12.19PCh. 12 - Prob. 12.20PCh. 12 - Prob. 12.21PCh. 12 - Prob. 12.22PCh. 12 - Prob. 12.23PCh. 12 - Prob. 12.24PCh. 12 - Prob. 12.1CTP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- Friction angle of dry sand is 35°. In a direct shear test on this sand, a normal stress of 150kPa was applied. What shear stress will cause the failure? (a) 150kPa (b) 50kPa (c) 78kPa (d) 105kPaarrow_forwardA sand sample is subjected to direct shear testing at it's (in - situ) water content. Two tests are performed. For one of the tests, the sample shears at a stress of 400 kPa when the normal stress is 600 kPa. From these data,Determine the value of the apparent cohesion. Determine the corresponding angle of internal friction.arrow_forwardA series of drained tri-axial tests were carrierd aut on a specimens of a sand prepared at the same porosity and the following results wer obtained at failure All Around Pressure, kPa 50 100 Principal Stress Difference, kPa 180 285 Calculate the value of the angle of shearing resistance What is the value of coliesion, Pa The maximum principal stress in kPa for a chamber pressure of 135 kPaarrow_forward
- The angle of friction of a compacted dry sand is 37 degrees. In a direct shear test on the sand, anormal stress of 150 kN/m^2 was applied. The size of the specimen was 50mmx50mx30mm(height) SITUATION 1 a. Compute the shearing stress Your answer b. What shear force will cause shear failure? Your answer c. Determine the shear stress at a depth of 3m if the void ratio of the soil is 0.60. Gs Of sand is 2.70arrow_forward2. A triaxial shear test was performed on a well-drained sand sample. The normal stress on the failure plane and the shear stress on the failure plane, at failure was determined to be 6,300 psf and 4,200 psf, respectively. a. Determine the angle of internal friction of the sand. b. Determine the angle of failure plane. c. Determine the maximum principal stress.arrow_forward9. A consolidated drained test was carried out on a sandy clay under a cell pressure of 250 kPa. A constant back pressure of 120 kPa applied throughout the test. The dimensions of the sample were 76 mm x 38 mm. Addional test data recorded at failure were: Load transducer force = 368 N 3 Measured change in volume = 2.42 x 10 m³ Axial deformation = 2.05 mm Determine the major principal stress, o, at failure. (455 kPa)arrow_forward
- A triaxial shear test was performed on a well-drained sand sample. The normal stress on the failure plane and the shearing stress on the failure plane were determined to be 75kPa and 42kPa, respectively. Determine the angle of internal friction of the sand, in degrees.Determine the axial stress applied to the specimen, in kPa.arrow_forwardA consolidated-undrained triaxial test was conducted on a dense sand with a chamber-confining pressure of 20 lb/in?. Results showed that o' = 24° and o = 31°. Determine the deviator stress and the pore water pressure at failure.arrow_forward20. A cohesionless sand sample was subjected to a triaxial shear test. Failure occurred when the normal stress is 400 KPa and the shear stress is 250 KPa. a. What is major principal stress? b. What is the minor principal stressarrow_forward
- A consolidated-undrained tri-axial test was conducted on a normally conslidated clay sample and the results are follows: Chamber confining pressure= 119kpa Deviator Stress at failure=90 kpa Pore water pressure= 58kpa These results were used to determine the drained friction angle of the soil. Compute the deviator stress (kpa) at failure when the drained test was conducted with the chamber confining pressure changed to 156 kpa. Use stored value. Answer to 5 decimal places.arrow_forward(a) A dry sand sample is tested in direct shear. The test procedure includes having a normal (compressive) stress of 200 kPa imposed while the sample undergoes shearing. The sample fails when the shear stress reaches 135 kPa. From this data, determine the angle of internal friction f for the soil.(b) A second sample of the same sand is also to be tested in direct shear, but the applied normal (compressive) stress will be 145 kPa. What shear stress is expected to cause the sample to fail?arrow_forwardA sample of dry sand is subjected to a tri- axial test. The angle of internal friction is 34.8°. The minor principal stress is 240 KPa. What is the major principal stress when the failure occurs in KPa?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Geotechnical Engineering (MindTap C...Civil EngineeringISBN:9781305970939Author:Braja M. Das, Khaled SobhanPublisher:Cengage LearningFundamentals of Geotechnical Engineering (MindTap...Civil EngineeringISBN:9781305635180Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning
Principles of Geotechnical Engineering (MindTap C...
Civil Engineering
ISBN:9781305970939
Author:Braja M. Das, Khaled Sobhan
Publisher:Cengage Learning
Fundamentals of Geotechnical Engineering (MindTap...
Civil Engineering
ISBN:9781305635180
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning