Principles of Geotechnical Engineering (MindTap Course List)
9th Edition
ISBN: 9781305970939
Author: Braja M. Das, Khaled Sobhan
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 12, Problem 12.12P
To determine
Find the major effective principal stress,
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Tri-Axial Tests
In a tri-axial test of a silty soil, the sample failed at normal stress of 475 kPa and a shear stress of 350 kPa.
1. Which of the following gives the angle of internal friction.
2. Compute the angle that the failure plane makes with the x-axis
3. Compute the maximum failure stress
The effective strength parameters for a clay are known to be cʹ = 15kPa and φʹ = 29°. A UU triaxial test and CUtriaxial test were performed on identical saturated samples of the same clay. In both cases, the cell pressure was 100 kPa. In the UU test, the deviator stress at failure was 98 kPa, and in the CU test, the deviator stress at failure was 264 kPa.
Find:•The undrained shear strength, su, of the specimen from the UU test•The pore pressure in the specimen at failure in the UU test.•The value of the Skempton parameter A̅ f from the CU test
Chapter 12 Solutions
Principles of Geotechnical Engineering (MindTap Course List)
Ch. 12 - Prob. 12.1PCh. 12 - Prob. 12.2PCh. 12 - Prob. 12.3PCh. 12 - Prob. 12.4PCh. 12 - Prob. 12.5PCh. 12 - Prob. 12.6PCh. 12 - Prob. 12.7PCh. 12 - Prob. 12.8PCh. 12 - Prob. 12.9PCh. 12 - Prob. 12.10P
Ch. 12 - Prob. 12.11PCh. 12 - Prob. 12.12PCh. 12 - Prob. 12.13PCh. 12 - Following are the results of...Ch. 12 - Prob. 12.15PCh. 12 - Prob. 12.16PCh. 12 - Prob. 12.17PCh. 12 - Prob. 12.18PCh. 12 - Prob. 12.19PCh. 12 - Prob. 12.20PCh. 12 - Prob. 12.21PCh. 12 - Prob. 12.22PCh. 12 - Prob. 12.23PCh. 12 - Prob. 12.24PCh. 12 - Prob. 12.1CTP
Knowledge Booster
Similar questions
- A consolidated-undrained triaxial compression test was performed on a normalconsolidated clay sample. During the experiment, the confining pressure was 140 kPa, thedeviator stress was 125 kPa, and the pore water pressure was 75 kPa at the time of failure.According to the information given:i- Find the consolidated-undrained internal friction angle of the clay. ii- Find the drained friction angle of the clayarrow_forwardA drained triaxial test on the normally consolidated clay showed that the failure plane makes an angle of 58 with the horizontal. If the sample was tested with a chamber confining pressure of 103.5kPA, what was the major principal stress at failure? (Unit in kPa) (Answer only number(whole number without unit)arrow_forwardA consolidated un-drained triaxial test was performed on a specimen of saturated clay with a kg chamber pressure o =2.0. At failure, cm² and the failure plane angle 0 = 57°. and (2) shear stress T on the failure surface and (3) the kg 0₁-03 2.8- cm u=1.8- cm Calculate (1) the normal stress maximum shear stress on the specimen.arrow_forward
- a sample was obtained from point a in the submerged clay layer shown below. It was determined that it had a q = 54% and a Gs = 2.78. What is the effective vertical stress, the porewater pressure and total stresses at point A?arrow_forwardc. An undisturbed soil sample, 110 mm in diameter and 220 mm in height, was tested in a triaxial machine. The sample sheared under an additional axial load of 3.35 kN with a vertical deformation of 21 mm. The failure plane was inclined at 50° to the horizontal and the cell pressure was 300 kN/m². i. Draw the Mohr circle diagram representing the above stress conditions, and from it determine: - Coulomb's equation for the shear strength of the soil, in terms of total stress; - the magnitude and obliquity of the resultant stress on the failure plane. ii. A further undisturbed sample of the soil was tested in a shear box under the same drainage conditions as used for the previous test. If the area of the box was 3600 mm² and the normal load was 500 N, what would you expect the failure stress to have been?arrow_forwardA consolidated-drained triaxial test was conducted on a normally consolidated clay. The results were as follows: Determine: a. Angle of friction, f? b. Angle u that the failure plane makes with the major principal plane c. Normal stress, s?, and shear stress, tf , on the failure planearrow_forward
- A consolidated drained (CD) triaxial test was carried out on a normally consolidated clay. The specimen was consolidated under a cell pressure of 100 kPa and back pressure of 30 kPa. The axial deviatoric stress was increased very slowly to failure, so that there was no excess pore water pressure developed during the shearing. The specimen failed under a deviatoric stress of 130 kPa. The back pressure of 30 kPa was maintained throughout the test. (i) What is the friction angle in terms of effective stresses? (ii) What are the shear stress and normal stress acting on the failure plane? Solution fast pleasearrow_forwardA consolidated undrained triaxial test was performed on a normally consolidated clay with a critical state friction angle of 230. After an initial isotropic consolidation at a cell pressure of 50 kPa, drainage was turned off, the cell pressure was increased to 85 kPa, and the sample was loaded to ultimate conditions. A pore pressure of 55 kPa was measured at ultimate state. What value of major principal total stress was measured at the ultimate state?arrow_forwardA consolidated drained (CD) triaxial test was carried out on a normally consolidated clay. The specimen was consolidated under a cell pressure of 100 kPa and back pressure of 30 kPa. The axial deviatoric stress was increased very slowly to failure, so that there was no excess pore water pressure developed during the shearing. The specimen failed under a deviatoric stress of 130 kPa. The back pressure of 30 kPa was maintained throughout the test. (1) What is the friction angle in terms of effective stresses? (ii) What are the shear stress and normal stress acting on the failure plane?arrow_forward
- 2. A triaxial shear test was performed on a well-drained sand sample. The normal stress on the failure plane and the shear stress on the failure plane, at failure was determined to be 6,300 psf and 4,200 psf, respectively. a. Determine the angle of internal friction of the sand. b. Determine the angle of failure plane. c. Determine the maximum principal stress.arrow_forwardA consolidated-drained triaxial test was conducted on an overconsolidated clay sample. The sample failed in test 1 at 01=200 kPa and 03=130 kPa, and in test 2 at o1=400 kPa and 03=290 kPa. Determine the undrained and drained friction angles and cohesion for the assumption that the Skempton's pore water pressure parameter A=0.45. Also, for a CU test on the same soil, determine o1, 1', 03', and excess pore water pressure u for 03=340 kPa.arrow_forward4- In a consolidated-drained triaxial test on a clay, the specimen failed at a deviator stress of 2,590 lb/ft². If the effective stress friction angle is known to be 29°, what was the effective confining pressure at failure?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Geotechnical Engineering (MindTap C...Civil EngineeringISBN:9781305970939Author:Braja M. Das, Khaled SobhanPublisher:Cengage LearningFundamentals of Geotechnical Engineering (MindTap...Civil EngineeringISBN:9781305635180Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning
Principles of Geotechnical Engineering (MindTap C...
Civil Engineering
ISBN:9781305970939
Author:Braja M. Das, Khaled Sobhan
Publisher:Cengage Learning
Fundamentals of Geotechnical Engineering (MindTap...
Civil Engineering
ISBN:9781305635180
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning