Principles of Geotechnical Engineering (MindTap Course List)
9th Edition
ISBN: 9781305970939
Author: Braja M. Das, Khaled Sobhan
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 12, Problem 12.18P
To determine
Find the undrained and drained friction angles for the soil.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
6
A consolidated-undrained tri-axial test was conducted on a normally consolidated clay sample and the results are as follows:
Chamber confining pressure = 115 kPa, Deviator stress at failure = 87 kPa, Pore Water Pressure = 56 kPa.
These results were used to determine the drained friction angle of the soil. Compute the deviator stress (kPa) at failure when the drained test was conducted with the chamber confining pressure changed to 159 kPa.
Round off to two decimal places.
sq
A triaxial test was performed on a dry. cohesionless sand. The sample fails when the confining stress (minor principal) is 45 kPa and the axial stress (major principal) is 89 kPa. Determine the angle of internal friction Φ for the soil. Adjust your answer to TWO decimal places.
Chapter 12 Solutions
Principles of Geotechnical Engineering (MindTap Course List)
Ch. 12 - Prob. 12.1PCh. 12 - Prob. 12.2PCh. 12 - Prob. 12.3PCh. 12 - Prob. 12.4PCh. 12 - Prob. 12.5PCh. 12 - Prob. 12.6PCh. 12 - Prob. 12.7PCh. 12 - Prob. 12.8PCh. 12 - Prob. 12.9PCh. 12 - Prob. 12.10P
Ch. 12 - Prob. 12.11PCh. 12 - Prob. 12.12PCh. 12 - Prob. 12.13PCh. 12 - Following are the results of...Ch. 12 - Prob. 12.15PCh. 12 - Prob. 12.16PCh. 12 - Prob. 12.17PCh. 12 - Prob. 12.18PCh. 12 - Prob. 12.19PCh. 12 - Prob. 12.20PCh. 12 - Prob. 12.21PCh. 12 - Prob. 12.22PCh. 12 - Prob. 12.23PCh. 12 - Prob. 12.24PCh. 12 - Prob. 12.1CTP
Knowledge Booster
Similar questions
- A sand sample in a triaxial test have the following stresses: Cell Pressure 25kpa 34kpa Axial Stress 33kpa 55kpa Pore Water pressure 12kpa 10kpa a. Compute the drained angle of internal friction. b. Determine the cohesion of the soil c. Find the angle of failure in sheararrow_forwardA consolidated drained tri-axial test was conducted on a normally consolidated clay. The results are as follows: Chamber confining presssure = 138 kPa Deviator stress = 258 kPa a. Compute the friction angle of the soil b. Compute the normal stress at failure c. Compute the shear stress at failurearrow_forwardQuestion 3 The results of two consolidated-drained test triaxial tests on a clay are given below: Specimen No. Chamber Pressure Deviator Stress 220 400 105 II 210 1. Determine the angle of internal friction. 2. Determine the cohesion of the clay. 3. Determine the normal stress on the point on the failure plane of the 2"d specimen. O Question 1: A. 26.744 O Question 1: B. 26.042 O Question 1: C. 27.871 O Question 1: D. 27.486 O Question 2: A. 10.737 O Question 2: B. 12.141 O Question 2: C. 17.372 O Question 2: D. 14.836 O Question 3: A. 317.694 O Question 3: B. 232.575 O Question 3: C. 230.306 O Question 3: D. 322.194 O O O O O O O COarrow_forward
- A triaxial shear test was performed on a well-drained sand sample. The normal stress on the failure plane and the shearing stress on the failure plane were determined to be 75kPa and 42kPa, respectively. Determine the angle of internal friction of the sand, in degrees.Determine the axial stress applied to the specimen, in kPa.arrow_forwardA consolidated-undrained tri-axial was conducted on a normally consolidated clay sample and the results are as follows: chamber confirming pressure = 107 kPa, Deviator stress at failure = 95 kPa, Pore Water Pressure = 50 kPa. these results were used to determine the drained friction angle of the soil. Compute the deviator stress in kPa at failure when the drained test was conducted with the chamber confirming pressure changed to 160 kPaarrow_forward3- For a normally consolidated clay specimen, the results of a drained triaxial test are as follows: Chamber confining pressure = 2,610 lb/ft², Deviator stress at failure = 3,655 lb/ft². Determine the soil friction angle, q'.arrow_forward
- A consolidated undrained tri-axial test was conducted on a normally consolidated clay sample and the results are as follows: chamber confining pressure = 110kpa deviator stress at failure = 96kpa pore water pressure = 66kpa these test results were used to determine the drained friction angle of the soil. compute the deviator stress in (kpa) at failure when the drained test was conducted with the chamber confining pressure changed to 163kpa.arrow_forward9. A consolidated drained test was carried out on a sandy clay under a cell pressure of 250 kPa. A constant back pressure of 120 kPa applied throughout the test. The dimensions of the sample were 76 mm x 38 mm. Addional test data recorded at failure were: Load transducer force = 368 N 3 Measured change in volume = 2.42 x 10 m³ Axial deformation = 2.05 mm Determine the major principal stress, o, at failure. (455 kPa)arrow_forward7.12 A sand specimen was subjected to a drained shear test using hollow cylin- der test equipment. Failure was caused by increasing the inside pressure while keeping the outside pressure constant. At failure, o, = 193 kN/m² and o; = 264 kN/m². The inside and outside radii of the specimen were 40 and 60 mm, respectively. (a) Calculate the soil friction angle. (b) Calculate the axial stress on the specimen at failure.arrow_forward
- Soil Mechanismarrow_forward2. A triaxial shear test was performed on a well-drained sand sample. The normal stress on the failure plane and the shear stress on the failure plane, at failure was determined to be 6,300 psf and 4,200 psf, respectively. a. Determine the angle of internal friction of the sand. b. Determine the angle of failure plane. c. Determine the maximum principal stress.arrow_forwardQuestion 34 A consolidated-undrained tri-axial test was conducted on a normally consolidated clay sample and the results are as follows: Chamber confining pressure = 109 kPa, Deviator stress at failure = 91 kPa, Pore Water Pressure = 54 kPa. These results were used to determine the drained friction angle of the soil. Compute the deviator stress (kPa) at failure when the drained test was conducted with the chamber confining pressure changed to 167 kPa. Round off to two decimal places.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Geotechnical Engineering (MindTap C...Civil EngineeringISBN:9781305970939Author:Braja M. Das, Khaled SobhanPublisher:Cengage Learning
Principles of Geotechnical Engineering (MindTap C...
Civil Engineering
ISBN:9781305970939
Author:Braja M. Das, Khaled Sobhan
Publisher:Cengage Learning