LCPO CHEMISTRY W/MODIFIED MASTERING
8th Edition
ISBN: 9780135214756
Author: Robinson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 12, Problem 12.83SP
Interpretation Introduction
Interpretation:
The
Concept introduction:
According to band theory, solids are classified as conductors, semiconductors, and insulators.
As per band theory, bands are a continuum of energy levels. The bands are of two types: valence band and conduction band.
The band that holds valence electrons is valence band and band that is slightly higher in energy than valence band is conduction band. On the basis of band theory, partly filled bands show conduction and are called conductors, and fully filled band doesn’t show conduction and are insulators.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
a) Explain the band structure of an electrical conductor (metal), a semiconductor, and an insulator at 0 K by showing the valence and conduction bands and fermi energy levels. Explain how the electrical conduction takes place in these three types of materials. Give an example for each type of material.
b)Explain what n and p-type semiconductors are using their band structures. Why?
What is the main element used in the manufacture of solar cells. Explain how additional elements
are used to change the conductivity of the material and produce N-type and P-type semiconductors
Use molecular orbital band diagrams to explain why metals are good conductors but semiconductors are not.
Chapter 12 Solutions
LCPO CHEMISTRY W/MODIFIED MASTERING
Ch. 12 - Calcium metal crystallizes in a cubic...Ch. 12 - Polonium metal crystallizes in a simple cubic...Ch. 12 - Polonium metal crystallizes in a simple cubic...Ch. 12 - The density of a sample of metal "as measured to...Ch. 12 - Zinc sulfide crystallizes in the following cubic...Ch. 12 - Prob. 12.6ACh. 12 - Prob. 12.7PCh. 12 - Prob. 12.8ACh. 12 - Prob. 12.9PCh. 12 - Prob. 12.10A
Ch. 12 - Prob. 12.11PCh. 12 - Prob. 12.12ACh. 12 - Prob. 12.13PCh. 12 - Prob. 12.14PCh. 12 - Prob. 12.15PCh. 12 - Prob. 12.16PCh. 12 - Prob. 12.17PCh. 12 - Identify each of the following kinds of packingCh. 12 - Prob. 12.19CPCh. 12 - Titanium oxide crystallizes in the following cubic...Ch. 12 - Prob. 12.21CPCh. 12 - Prob. 12.22CPCh. 12 - Prob. 12.23CPCh. 12 - Prob. 12.24CPCh. 12 - Prob. 12.25CPCh. 12 - Prob. 12.26SPCh. 12 - Prob. 12.27SPCh. 12 - Prob. 12.28SPCh. 12 - Prob. 12.29SPCh. 12 - Prob. 12.30SPCh. 12 - Prob. 12.31SPCh. 12 - Diffraction of X rays with =154.2 pm at an angle...Ch. 12 - Diffraction of X rays with =154.2 pm at an angle...Ch. 12 - Which of the four kinds of packing used by metals...Ch. 12 - What is a unit cell? How many atoms are in one...Ch. 12 - Copper crystallizes in a face-centered cubic unit...Ch. 12 - Lead crystallizes in a cubic unit cell with anedge...Ch. 12 - Prob. 12.38SPCh. 12 - Tungsten crystallizes in a body-centered cubic...Ch. 12 - Prob. 12.40SPCh. 12 - Prob. 12.41SPCh. 12 - Titanium metal has a density of and an atomic...Ch. 12 - Calcium metal has a density of 1.55 g/cm3 and...Ch. 12 - The atomic radius of Pb is 175 pm, and the density...Ch. 12 - The density of a sample of metal was measured to...Ch. 12 - If a protein can be induced to crystallize, its...Ch. 12 - The molecular structure of a scorpion toxin, a...Ch. 12 - Iron crystallizes in a body-centered cubic unit...Ch. 12 - Silver metal crystallizes in a face-centered cubic...Ch. 12 - Sodium hydride, NaH, crystallizes in a...Ch. 12 - Cesium chloride crystallizers in a cubic unit cell...Ch. 12 - If the edge length of an NaH unit cell is 488 pm,...Ch. 12 - The edge length of a CsCI unit cell (Problem...Ch. 12 - Silicon carbide, SiC, is a covalent network solid...Ch. 12 - Prob. 12.55SPCh. 12 - Prob. 12.56SPCh. 12 - Prob. 12.57SPCh. 12 - Prob. 12.58SPCh. 12 - Prob. 12.59SPCh. 12 - Prob. 12.60SPCh. 12 - Prob. 12.61SPCh. 12 - Prob. 12.62SPCh. 12 - Prob. 12.63SPCh. 12 - Prob. 12.64SPCh. 12 - Prob. 12.65SPCh. 12 - Prob. 12.66SPCh. 12 - Prob. 12.67SPCh. 12 - Prob. 12.68SPCh. 12 - Prob. 12.69SPCh. 12 - Prob. 12.70SPCh. 12 - Prob. 12.71SPCh. 12 - Prob. 12.72SPCh. 12 - Prob. 12.73SPCh. 12 - Prob. 12.74SPCh. 12 - Prob. 12.75SPCh. 12 - Prob. 12.76SPCh. 12 - Prob. 12.77SPCh. 12 - Prob. 12.78SPCh. 12 - Prob. 12.79SPCh. 12 - Prob. 12.80SPCh. 12 - Prob. 12.81SPCh. 12 - Prob. 12.82SPCh. 12 - Prob. 12.83SPCh. 12 - Prob. 12.84SPCh. 12 - Prob. 12.85SPCh. 12 - Prob. 12.86SPCh. 12 - Prob. 12.87SPCh. 12 - Prob. 12.88SPCh. 12 - Prob. 12.89SPCh. 12 - Prob. 12.90SPCh. 12 - Prob. 12.91SPCh. 12 - Prob. 12.92SPCh. 12 - Prob. 12.93SPCh. 12 - Prob. 12.94SPCh. 12 - Prob. 12.95SPCh. 12 - Prob. 12.96SPCh. 12 - Prob. 12.97SPCh. 12 - Prob. 12.98SPCh. 12 - Prob. 12.99SPCh. 12 - Prob. 12.100SPCh. 12 - Prob. 12.101SPCh. 12 - A photovoltaic cell contains a p-n junction that...Ch. 12 - Prob. 12.103SPCh. 12 - Prob. 12.104SPCh. 12 - Prob. 12.105SPCh. 12 - Prob. 12.106SPCh. 12 - Prob. 12.107SPCh. 12 - Prob. 12.108SPCh. 12 - Prob. 12.109SPCh. 12 - Prob. 12.110SPCh. 12 - Prob. 12.111SPCh. 12 - Prob. 12.112SPCh. 12 - Prob. 12.113SPCh. 12 - Prob. 12.114SPCh. 12 - Prob. 12.115SPCh. 12 - Prob. 12.116SPCh. 12 - Prob. 12.117SPCh. 12 - Prob. 12.118SPCh. 12 - Prob. 12.119SPCh. 12 - Prob. 12.120SPCh. 12 - Prob. 12.121SPCh. 12 - Prob. 12.122SPCh. 12 - Prob. 12.123SPCh. 12 - Prob. 12.124SPCh. 12 - Prob. 12.125SPCh. 12 - Prob. 12.126SPCh. 12 - Prob. 12.127SPCh. 12 - Prob. 12.128SPCh. 12 - Prob. 12.129SPCh. 12 - Prob. 12.130SPCh. 12 - Prob. 12.131SPCh. 12 - Prob. 12.132SPCh. 12 - Prob. 12.133SPCh. 12 - Prob. 12.134MPCh. 12 - Prob. 12.135MPCh. 12 - Prob. 12.136MPCh. 12 - Prob. 12.137MPCh. 12 - Assume that 1588 g of an alkali metal undergoes...Ch. 12 - Prob. 12.139MPCh. 12 - Prob. 12.140MPCh. 12 - Prob. 12.141MPCh. 12 - Prob. 12.142MPCh. 12 - Prob. 12.143MPCh. 12 - Prob. 12.144MP
Knowledge Booster
Similar questions
- 8.96 A business manager wants to provide a wider range of p- and n-type semiconductors as a strategy to enhance sales. You are the lead materials engineer assigned to communicate with this manager. How would you explain why there are more ways to build a p-type semiconductor from silicon than there are ways to build an n-type semiconductor from silicon?arrow_forwardFor each of the following pairs of semiconductors, pick which one would have the larger bandgap. Explain your answer. i. ZnS and ZnSe ii. Si and AlP iii. GaN and InParrow_forwardWhat do Doped semiconductors contain?arrow_forward
- How are metals used as semiconductors refined? What is the principle of the method used?arrow_forwardIs Aluminium is commonly deliberately alloyed with iron? Why ?arrow_forwardExplain how metallic conductors, semiconductors, and insulators are identified and explain their properties in terms of band theory. Why is graphite an electronic conductor and diamond an insulator?arrow_forward
- Consider the band diagrams below, which of them represents an n-type semi-conductor? A B C D D A Energy O O O Oarrow_forward(a) Why electrical conductivity of the semiconductor increases with increase in temperature? Illustrate and explain the above effect with hypothetical band energy diagrams, showing one at 25 °C and another at 50 °C? (b) The number average molecular weight of polyvinyl chloride (PVC) is 110000 g/mol and the Polydispersity index (PDI) is 1.3. What is the weight average molecular weight and degree of polymerization of PVC? Note: Molar mass of vinyl chloride is 62.498 g/molarrow_forwardApply the concepts of molecular orbital theory to solids (band structure, valence band, conduction bond, band gap, holes, insulator, conductor, semiconductors, intrinsic semiconductors, doped semiconductors, n-type semiconductor, p-type semiconductor)arrow_forward
- Blue LEDS are made from In,Ga1-N semiconductors with a band gap in eV given by Eg = 3.40 – 3.75x + x2 (b) Given that the wavelength of blue visible light is 470 nm, what would be the value of x necessary to make a blue LED? Note the solutions to the quadratic equation 0 = ax? + bx + c are given by -b + Vb2 – 4ac X = 2aarrow_forwardType of Steel %Carbon Characteristics Uses Low-carbon steel <0.2 % Malleable and ductile Chains and nails High-carbon steel 0.6 1.5 % Hard and brittle Cutting tools The table above provides some information about two types of steel, both of which are alloys of iron and carbon. Why high-carbon steel is more rigid than low-carbon steel?arrow_forward03. How can we determine of the band-gap of gemanium from electrical measurements?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning