Chemistry
Chemistry
13th Edition
ISBN: 9781259911156
Author: Raymond Chang Dr., Jason Overby Professor
Publisher: McGraw-Hill Education
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 12, Problem 12.83QP

Lysozyme is an enzyme that cleaves bacterial cell walls. A sample of lysozyme extracted from egg white has a molar mass of 13,930 g. A quantity of 0.100 g of this enzyme is dissolved in 150 g of water at 25°C. Calculate the vapor-pressure lowering, the depression in freezing point, the elevation in boiling point, and the osmotic pressure of this solution. (The vapor pressure of water at 25°C is 23.76 mmHg.)

Expert Solution & Answer
Check Mark
Interpretation Introduction

Interpretation:

For given solution vapor pressure lowering, freezing point depression, boiling point elevation and osmotic pressures to be calculated.

Concept introduction

Boiling point elevation(ΔTb): Boiling point is the distinction between boiling point of the pure solvent (Tb°) and the boiling point of the solution (Tb).

ΔTb= Kbm

Where,

ΔTb= Change ib boiling pointTb= Boiling point of the solutionTb°= Boiling point of pure solvent

Freezing point depression(ΔTf): Freezing point depression is the distinction between freezing point of the pure solvent (Tf°) and freezing point of the solution (Tf).

ΔTf= Kfm

Where,

ΔTf= Change in freezing pointTf= Freezing point of the solutionTf°= Freezing point of pure solvent

Osmotic pressure is the pressure that is needed to stop osmosis. Osmotic pressure of the solution is directly proportional to the concentration of the solution.  We can calculate osmotic pressure by using this formula is given by,

osmotic pressure(π) = MRT

Where,

Vapor pressure lowering: Vapor pressure lowering is one of the colligative properties. Pure solvent has higher vapour pressure than its solution have non-volatile liquid.  Thus vapour pressure lowering guide boiling point elevation.

ΔP = χBA

Where,

χB- Mole fraction of the soluteP°C- vapor pressure of the pure solvent

Answer to Problem 12.83QP

Vapour pressure lowering of the solution = Chemistry, Chapter 12, Problem 12.83QP , additional homework tip  1

Freezing point elevation = Chemistry, Chapter 12, Problem 12.83QP , additional homework tip  2

Boiling point elevation = Chemistry, Chapter 12, Problem 12.83QP , additional homework tip  3

Osmotic pressure = Chemistry, Chapter 12, Problem 12.83QP , additional homework tip  4

Explanation of Solution

Given data

Molar mass of egg white = 13,930g

Amount of enzyme which is dissolved in water = 0.100g

Amount of water = 150g

Vapor pressure of water = 23.76 mmHg at 25°C

Calculation of number of moles in lysozyme and water

nIsozyme=1.00g×1mol13,930g=7.18×10-6mol

Molecular mass of water =18.02g/mol

nwater=150g×1mol18.02g= 8.32mol

By plugging in the value of amount of Isozyme and molar mass of egg white, mole of Isozyme has calculated.  Similarly, by plugging in the value of amount of water and molar mass of water, mole of water has calculated.

Calculation of vapour pressure lowering of the solution

ΔP = χIysozymewater=nIsozymenIsozyme+nwater(23.76mmHg)

ΔP=7.18×10-6mol[(7.18×10-6)+8.32mol](23.76mmHg) = 2.05×10-5mmHg

By plugging in the values of mole fraction of Isozyme and vapour pressure of water, vapour pressure lowering of the solution has calculated.

Calculation freezing point depression of the solution

Molal freezing point depression constant = 1.86°C/m

ΔTf =Kfm =(1.86°C/m)[7.18×10-6mol0.150kg]= 8.90×10-5°C

By plugging in the values of molal freezing point depression constant and molality of the solution, freezing point depression of the solution has calculated.

Calculation of boiling point elevation of the solution

Boiling point elevation constant = 1.52°C/m

ΔTb =Kbm =(1.86°C/m)[7.18×10-6mol0.150kg]= 2.5×10-5°C

By plugging in the values of boiling point elevation constant and molality of the solution, boiling point elevation of the solution has calculated.

Calculation of osmotic pressure of the solution

As known above, we assume the density of the solution is 1.00g/mL. The volume of the solution will be150mL.

π = MRT =(7.18×10-6mol0.150L)(0.08206L.atm/K.mol)(298K)=1.17×10-3atm = 0.889mmHg

By plugging in the values of molarity of the solution, ideal gas constant and temperature in Kelvin, the osmotic pressure of the solution has calculated.

Conclusion

Vapour pressure lowering of the solution was calculated as 2.05×10-5mm Hg

Freezing point elevation has calculated as 8.90×10-5°C.

Boiling point elevation has calculated as 2.5×10-5°C.

Osmotic pressure has calculated as 0.889 mmHg.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 12 Solutions

Chemistry

Ch. 12.4 - Using Figure 12.3, rank the potassium salts in...Ch. 12.5 - Calculate the molar concentration of oxygen in...Ch. 12.5 - Which of the following gases has the greatest...Ch. 12.5 - Prob. 2RCFCh. 12.6 - Calculate the vapor pressure of a solution made by...Ch. 12.6 - Prob. 8PECh. 12.6 - Prob. 9PECh. 12.6 - A solution of 0.85 g of an organic compound in...Ch. 12.6 - Prob. 11PECh. 12.6 - A solution contains equal molar amounts of liquids...Ch. 12.6 - What does it mean when we say that the osmotic...Ch. 12.6 - Calculate the boiling point and freezing point of...Ch. 12.7 - The freezing-point depression of a 0.100 m MgSO4...Ch. 12.7 - Indicate which compound in each of the following...Ch. 12.7 - Prob. 2RCFCh. 12 - Prob. 12.1QPCh. 12 - Prob. 12.2QPCh. 12 - Briefly describe the solution process at the...Ch. 12 - Prob. 12.4QPCh. 12 - Prob. 12.5QPCh. 12 - As you know, some solution processes are...Ch. 12 - Prob. 12.7QPCh. 12 - Describe the factors that affect the solubility of...Ch. 12 - Prob. 12.9QPCh. 12 - Prob. 12.10QPCh. 12 - Arrange the following compounds in order of...Ch. 12 - Explain the variations in solubility in water of...Ch. 12 - Prob. 12.13QPCh. 12 - Prob. 12.14QPCh. 12 - Calculate the percent by mass of the solute in...Ch. 12 - Calculate the amount of water (in grams) that must...Ch. 12 - Prob. 12.17QPCh. 12 - Prob. 12.18QPCh. 12 - Calculate the molalities of the following aqueous...Ch. 12 - For dilute aqueous solutions in which the density...Ch. 12 - Prob. 12.21QPCh. 12 - The concentrated sulfuric acid we use in the...Ch. 12 - Prob. 12.23QPCh. 12 - The density of an aqueous solution containing 10.0...Ch. 12 - Prob. 12.25QPCh. 12 - Describe the fractional crystallization process...Ch. 12 - A 3.20-g sample of a salt dissolves in 9.10 g of...Ch. 12 - The solubility of KNO3 is 155 g per 100 g of water...Ch. 12 - Prob. 12.29QPCh. 12 - Discuss the factors that influence the solubility...Ch. 12 - Prob. 12.31QPCh. 12 - Prob. 12.32QPCh. 12 - Prob. 12.33QPCh. 12 - A man bought a goldfish in a pet shop. Upon...Ch. 12 - A beaker of water is initially saturated with...Ch. 12 - A miner working 260 m below sea level opened a...Ch. 12 - The solubility of CO2 in water at 25C and 1 atm is...Ch. 12 - The solubility of N2 in blood at 37C and at a...Ch. 12 - Prob. 12.39QPCh. 12 - Write the equation representing Raoults law, and...Ch. 12 - Prob. 12.41QPCh. 12 - Prob. 12.42QPCh. 12 - Prob. 12.43QPCh. 12 - Prob. 12.44QPCh. 12 - Prob. 12.45QPCh. 12 - Prob. 12.46QPCh. 12 - Prob. 12.47QPCh. 12 - Describe how you would use freezing-point...Ch. 12 - Prob. 12.49QPCh. 12 - Prob. 12.50QPCh. 12 - The vapor pressure of benzene is 100.0 mmHg at...Ch. 12 - The vapor pressures of ethanol (C2H5OH) and...Ch. 12 - The vapor pressure of ethanol (C2H5OH) at 20C is...Ch. 12 - Prob. 12.54QPCh. 12 - What are the boiling point and freezing point of a...Ch. 12 - Prob. 12.56QPCh. 12 - Pheromones are compounds secreted by the females...Ch. 12 - The elemental analysis of an organic solid...Ch. 12 - How many liters of the antifreeze ethylene glycol...Ch. 12 - Prob. 12.60QPCh. 12 - Prob. 12.61QPCh. 12 - A solution of 2.50 g of a compound having the...Ch. 12 - A solution containing 0.8330 g of a polymer of...Ch. 12 - Prob. 12.65QPCh. 12 - A solution of 6.85 g of a carbohydrate in 100.0 g...Ch. 12 - Prob. 12.67QPCh. 12 - Prob. 12.69QPCh. 12 - Consider two aqueous solutions, one of sucrose...Ch. 12 - Arrange the following solutions in order of...Ch. 12 - Prob. 12.72QPCh. 12 - What are the normal freezing points and boiling...Ch. 12 - At 25C the vapor pressure of pure water is 23.76...Ch. 12 - Both NaCl and CaCl2 are used to melt ice on roads...Ch. 12 - A 0.86 percent by mass solution of NaCl is called...Ch. 12 - Prob. 12.77QPCh. 12 - Calculate the osmotic pressure of a 0.0500 M MgSO4...Ch. 12 - Prob. 12.79QPCh. 12 - Prob. 12.80QPCh. 12 - Prob. 12.81QPCh. 12 - Water and methanol are miscible with each other...Ch. 12 - Lysozyme is an enzyme that cleaves bacterial cell...Ch. 12 - Prob. 12.84QPCh. 12 - Prob. 12.85QPCh. 12 - Two liquids A and B have vapor pressures of 76...Ch. 12 - Prob. 12.87QPCh. 12 - Prob. 12.88QPCh. 12 - Prob. 12.89QPCh. 12 - Calculate the mass of naphthalene (C10H8) that...Ch. 12 - Consider the three mercury manometers shown. One...Ch. 12 - Prob. 12.92QPCh. 12 - Prob. 12.93QPCh. 12 - A solution of 1.00 g of anhydrous aluminum...Ch. 12 - Desalination is a process of removing dissolved...Ch. 12 - Prob. 12.96QPCh. 12 - A protein has been isolated as a salt with the...Ch. 12 - Prob. 12.98QPCh. 12 - Hydrogen peroxide with a concentration of 3.0...Ch. 12 - State which of the alcohols listed in Problem...Ch. 12 - Prob. 12.101QPCh. 12 - Iodine (I2) is only sparingly soluble in water...Ch. 12 - Prob. 12.103QPCh. 12 - In the apparatus shown, what will happen if the...Ch. 12 - Prob. 12.105QPCh. 12 - Concentrated hydrochloric acid is usually...Ch. 12 - Explain each of the following statements: (a) The...Ch. 12 - Prob. 12.108QPCh. 12 - A 0.050 M hydrofluoric acid (HF) solution is 11...Ch. 12 - Shown here is a plot of vapor pressures of two...Ch. 12 - Prob. 12.111QPCh. 12 - Prob. 12.112QPCh. 12 - Prob. 12.113QPCh. 12 - Prob. 12.114QPCh. 12 - Prob. 12.115QPCh. 12 - A mixture of ethanol and 1-propanol behaves...Ch. 12 - Prob. 12.117QPCh. 12 - Prob. 12.118QPCh. 12 - Prob. 12.119QPCh. 12 - Acetic acid is a weak acid that ionizes in...Ch. 12 - Making mayonnaise involves beating oil into small...Ch. 12 - Acetic acid is a polar molecule and can form...Ch. 12 - A 2.6-L sample of water contains 192 g of lead....Ch. 12 - Certain fishes in the Antarctic Ocean swim in...Ch. 12 - Prob. 12.125QPCh. 12 - Prob. 12.126QPCh. 12 - Prob. 12.127QPCh. 12 - At 27C, the vapor pressure of pure water is 23.76...Ch. 12 - Prob. 12.129QPCh. 12 - Liquids A (molar mass 100 g/mol) and B (molar mass...Ch. 12 - A very long pipe is capped at one end with a...Ch. 12 - Prob. 12.132QPCh. 12 - A mixture of liquids A and B exhibits ideal...Ch. 12 - Prob. 12.134QPCh. 12 - (a) Derive the equation relating the molality (m)...Ch. 12 - Prob. 12.136QPCh. 12 - A student carried out the following procedure to...Ch. 12 - Valinomycin is an antibiotic. It functions by...Ch. 12 - Prob. 12.139QPCh. 12 - Here is an after-dinner trick. With guests still...Ch. 12 - The molecule drawn here has shown promise as an...Ch. 12 - The Henrys law constant of oxygen in water at 25C...Ch. 12 - The diagram shows the vapor pressure curves for...Ch. 12 - Prob. 12.144QPCh. 12 - Prob. 12.146QP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Chemistry & Chemical Reactivity
    Chemistry
    ISBN:9781337399074
    Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
    Publisher:Cengage Learning
    Text book image
    Principles of Modern Chemistry
    Chemistry
    ISBN:9781305079113
    Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
    Publisher:Cengage Learning
    Text book image
    Chemistry & Chemical Reactivity
    Chemistry
    ISBN:9781133949640
    Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
    Publisher:Cengage Learning
  • Text book image
    General Chemistry - Standalone book (MindTap Cour...
    Chemistry
    ISBN:9781305580343
    Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
    Publisher:Cengage Learning
    Text book image
    Chemistry: The Molecular Science
    Chemistry
    ISBN:9781285199047
    Author:John W. Moore, Conrad L. Stanitski
    Publisher:Cengage Learning
    Text book image
    Chemistry
    Chemistry
    ISBN:9781305957404
    Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
    Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Solutions: Crash Course Chemistry #27; Author: Crash Course;https://www.youtube.com/watch?v=9h2f1Bjr0p4;License: Standard YouTube License, CC-BY