
Concept explainers
A solution was prepared by dissolving 0.800 g of sulfur, Sg, in 100.0 g of acetic acid, HC2H3O2. Calculate the freezing point and boiling point of the solution.

Interpretation:
The boiling point and freezing point of
Concept Introduction:
Elevation in boiling point is a colligative property which refers to increase in boiling point of the solution due to the addition of non-volatile solute. It is expressed as,
Where,
Depression in freezing point is a colligative property which refers to decrease in freezing point of the solution due to the addition of non-volatile solute. It is expressed as,
Where,
Molality or molal concentration is one of the many parameters that is used to express concentration of a solution. It is expressed as,
Answer to Problem 12.70QP
The boiling point of
The freezing point of
Explanation of Solution
Given that mass of solvent acetic acid is
Number of moles of sulfur is,
Molality of the solution is,
From the data given in the table
Therefore, depression in freezing point is,
Substitute the values,
The depression in freezing point is equivalent to the difference between freezing temperature of pure solvent and solution. Hence freezing point of the solution is,
From the data given in the table
Therefore, elevation in boiling point is,
Substitute the values,
The elevation in boiling point is equivalent to the difference between boiling temperature of and solution and pure solvent. Hence boiling point of the solution is,
Depression in freezing point and elevation in boiling point are colligative properties that depend upon the concentration of the solute in solution. The molal concentration of the solute, depression in freezing point and elevation in boiling point are the key parameters to determine freezing point and boiling point of the solution.
Want to see more full solutions like this?
Chapter 12 Solutions
Student Solutions Manual for Ebbing/Gammon's General Chemistry, 11th
- (15 pts) Consider the molecule B2H6. Generate a molecular orbital diagram but this time using a different approach that draws on your knowledge and ability to put concepts together. First use VSEPR or some other method to make sure you know the ground state structure of the molecule. Next, generate an MO diagram for BH2. Sketch the highest occupied and lowest unoccupied MOs of the BH2 fragment. These are called frontier orbitals. Now use these frontier orbitals as your basis set for producing LGO's for B2H6. Since the BH2 frontier orbitals become the LGOS, you will have to think about what is in the middle of the molecule and treat its basis as well. Do you arrive at the same qualitative MO diagram as is discussed in the book? Sketch the new highest occupied and lowest unoccupied MOs for the molecule (B2H6).arrow_forwardQ8: Propose an efficient synthesis of cyclopentene from cyclopentane.arrow_forwardQ7: Use compound A-D, design two different ways to synthesize E. Which way is preferred? Please explain. CH3I ONa NaOCH 3 A B C D E OCH3arrow_forward
- Predict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2).arrow_forward(10 pts) The density of metallic copper is 8.92 g cm³. The structure of this metal is cubic close-packed. What is the atomic radius of copper in copper metal?arrow_forwardPredict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2).arrow_forward
- Predict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2).arrow_forwardQ3: Rank the following compounds in increasing reactivity of E1 and E2 eliminations, respectively. Br ca. go do A CI CI B C CI Darrow_forwardQ5: Predict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2). H₂O דיי "Br KN3 CH3CH2OH NaNH2 NH3 Page 3 of 6 Chem 0310 Organic Chemistry 1 HW Problem Sets CI Br excess NaOCH 3 CH3OH Br KOC(CH3)3 DuckDuckGarrow_forward
- Q4: Circle the substrate that gives a single alkene product in a E2 elimination. CI CI Br Brarrow_forwardPlease calculate the chemical shift of each protonsarrow_forwardQ1: Answer the questions for the reaction below: ..!! Br OH a) Predict the product(s) of the reaction. b) Is the substrate optically active? Are the product(s) optically active as a mix? c) Draw the curved arrow mechanism for the reaction. d) What happens to the SN1 reaction rate in each of these instances: 1. Change the substrate to Br 'CI 2. Change the substrate to 3. Change the solvent from 100% CH3CH2OH to 10% CH3CH2OH + 90% DMF 4. Increase the substrate concentration by 3-fold.arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage Learning




