Molar concentration of Maltose solution at given Osmotic pressure and temperature has to be calculated. Concept Introduction: In the process of osmosis , the solvent molecules pass through a semi - permeable membrane from less concentrated solution to more concentrated solution. The pressure that has to be applied to prevent the flow of solvent molecules is called osmotic pressure . It is expressed as, π = M R T Where, π = osmotic pressure M = Molar concentration R = Universal gas constant T = Temperature Molarity or molal concentration is one of the many parameters that is used to express concentration of a solution . It is expressed as, Molarity = n u m b e r of m o l e s o f solute v o l u m e of solution in L
Molar concentration of Maltose solution at given Osmotic pressure and temperature has to be calculated. Concept Introduction: In the process of osmosis , the solvent molecules pass through a semi - permeable membrane from less concentrated solution to more concentrated solution. The pressure that has to be applied to prevent the flow of solvent molecules is called osmotic pressure . It is expressed as, π = M R T Where, π = osmotic pressure M = Molar concentration R = Universal gas constant T = Temperature Molarity or molal concentration is one of the many parameters that is used to express concentration of a solution . It is expressed as, Molarity = n u m b e r of m o l e s o f solute v o l u m e of solution in L
Solution Summary: The author explains that molar concentration of Maltose solution at given Osmotic pressure and temperature has to be calculated.
Molar concentration of Maltose solution at given Osmotic pressure and temperature has to be calculated.
Concept Introduction:
In the process of osmosis, the solvent molecules pass through a semi - permeable membrane from less concentrated solution to more concentrated solution. The pressure that has to be applied to prevent the flow of solvent molecules is called osmotic pressure. It is expressed as,
π=MRT
Where,
π= osmotic pressureM= Molar concentrationR= Universal gas constantT= Temperature
Molarity or molal concentration is one of the many parameters that is used to express concentration of a solution. It is expressed as,
Molarity = number of molesof solutevolume of solution in L
5. A buffer consists of 0.45 M NH, and 0.25 M NH-CI (PK of NH 474) Calculate the pH of the butter. Ans: 9.52
BAS
PH-9.26 +10g (10.95))
14-4.59
PH=4.52
6. To 500 ml of the buffer on #5 a 0.20 g of sample of NaOH was added
a Write the net ionic equation for the reaction which occurs
b. Should the pH of the solution increase or decrease sightly?
Calculate the pH of the buffer after the addition Ans: 9.54
Explain the inductive effect (+I and -I) in benzene derivatives.
The inductive effect (+I and -I) in benzene derivatives, does it guide ortho, meta or para?
Chapter 12 Solutions
Student Solutions Manual for Ebbing/Gammon's General Chemistry, 11th