![Student Solutions Manual for Ebbing/Gammon's General Chemistry, 11th](https://www.bartleby.com/isbn_cover_images/9781305673472/9781305673472_largeCoverImage.gif)
(a)
Interpretation:
A solution is made of volatile solute and another solution is made of non-volatile solute. Of the two solutions the solution having higher vapor pressure and higher boiling point has to be identified.
Concept Introduction:
Vapor pressure of a substance is known as the pressure exerted by molecules on the vapor phase when they are in equilibrium with their actual phase which can be liquid or solid.
A substance is said to be volatile if it vaporizes readily at room temperature itself. Such substances have high vapor pressure as most of its molecules tend to exist in vapor phase. A substance is said to be non-volatile if it doesn’t vaporize spontaneously and remains stable.
Vapor pressure of a volatile solvent can be lowered by addition of a non-volatile solute. Raoult’s law deals with the vapor pressure of pure solvents and solution which states –
Partial pressure of solvent is equivalent to the product of vapor pressure of the solvent in its pure state and mole fraction of solvent in the solution. It is expressed as,
Where,
When the solute is non-volatile, the vapor pressure of the whole solution is equal to
The lowering of vapor pressure of the solvent due to the addition of non-volatile solute is expressed as,
Where,
Boiling point of a liquid substance is defined as the temperature at which the vapor pressure of the liquid becomes equal to the atmospheric pressure.
(b)
Interpretation:
A solution is made of volatile solute and another solution is made of non-volatile solute. Of the two solutions the solution having higher vapor pressure and higher boiling point has to be identified.
Concept Introduction:
Vapor pressure of a substance is known as the pressure exerted by molecules on the vapor phase when they are in equilibrium with their actual phase which can be liquid or solid.
A substance is said to be volatile if it vaporizes readily at room temperature itself. Such substances have high vapor pressure as most of its molecules tend to exist in vapor phase. A substance is said to be non-volatile if it doesn’t vaporize spontaneously and remains stable.
Vapor pressure of a volatile solvent can be lowered by addition of a non-volatile solute. Raoult’s law deals with the vapor pressure of pure solvents and solution which states –
Partial pressure of solvent is equivalent to the product of vapor pressure of the solvent in its pure state and mole fraction of solvent in the solution. It is expressed as,
Where,
When the solute is non-volatile, the vapor pressure of the whole solution is equal to
The lowering of vapor pressure of the solvent due to the addition of non-volatile solute is expressed as,
Where,
Boiling point of a liquid substance is defined as the temperature at which the vapor pressure of the liquid becomes equal to the atmospheric pressure.
![Check Mark](/static/check-mark.png)
Trending nowThis is a popular solution!
![Blurred answer](/static/blurred-answer.jpg)
Chapter 12 Solutions
Student Solutions Manual for Ebbing/Gammon's General Chemistry, 11th
- Add substituents to draw the conformer below (sighting down the indicated bond), then rotate the back carbon to provide the anti staggered conformer. + H3C H Ph H Problem 25 of 30 Drawing Atoms, Bonds and Rings Charges Tap a node to see suggestions H H H Undo Rasat Remove Done Finish update Rotate Submitarrow_forwardwhat temperature does a 50% (mole fraction) of ammonia/water liquid mixture boil at 1 atmarrow_forward1) Suppose 0.1 kg ice at 0°C (273K) is in 0.5kg water at 20°C (293K). What is the change in entropy of the ice as it melts at 0°? To produce the original "water gas" mixture, carbon (in a combustible form known as coke) is reacted with steam: 131.4 kJ + H20(g) + C(s) → CO(g) + H2(g) From this information and the equations in the previous problem, calculate the enthalpy for the combustion or carbon to form carbon dioxide. kindly show me how to solve both parts of the same long problem. Thanksarrow_forward
- we were assigned to dilute 900ppm in to 18ppm by using only 250ml vol flask. firstly we did calc and convert 900ppm to 0.9 ppm to dilute in 1 liter. to begin the experiment we took 0,225g of kmno4 and dissolved in to 250 vol flask. then further we took 10 ml sample sol and dissolved in to 100 ml vol flask and put it in to a spectrometer and got value of 0.145A . upon further calc we got v2 as 50ml . need to find DF, % error (expval and accptVal), molarity, molality. please write the whole report. thank you The format, tables, introduction, procedure and observation, result, calculations, discussion and conclusionarrow_forwardQ5. Predict the organic product(s) for the following transformations. If no reaction will take place (or the reaction is not synthetically useful), write "N.R.". Determine what type of transition state is present for each reaction (think Hammond Postulate). I Br₂ CH3 F2, light CH3 Heat CH3 F₂ Heat Br2, light 12, light CH3 Cl2, light Noarrow_forwardNonearrow_forward
- In the phase diagram of steel (two components Fe and C), region A is the gamma austenite solid and region B contains the gamma solid and liquid. Indicate the degrees of freedom that the fields A and B have,arrow_forwardFor a condensed binary system in equilibrium at constant pressure, indicate the maximum number of phases that can exist.arrow_forwardPart V. Label ad match the carbons in compounds Jane and Diane w/ the corresponding peak no. in the Spectra (Note: use the given peak no. To label the carbons, other peak no are intentionally omitted) 7 4 2 -0.13 -0.12 -0.11 -0.10 -0.08 8 CI Jane 1 -0.09 5 210 200 190 180 170 160 150 140 130 120 110 100 -8 90 f1 (ppm) 11 8 172.4 172.0 f1 (ppr HO CI NH Diane 7 3 11 80 80 -80 -R 70 60 60 2 5 -8 50 40 8. 170 160 150 140 130 120 110 100 90 -0 80 70 20 f1 (ppm) 15 30 -20 20 -60 60 -0.07 -0.06 -0.05 -0.04 -0.03 -0.02 -0.01 -0.00 -0.01 10 -0.17 16 15 56 16 -0.16 -0.15 -0.14 -0.13 -0.12 -0.11 -0.10 -0.09 -0.08 -0.07 -0.06 -0.05 -0.04 17.8 17.6 17.4 17.2 17.0 f1 (ppm) -0.03 -0.02 550 106 40 30 20 20 -0.01 -0.00 F-0.01 10 0arrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9780534420123/9780534420123_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079113/9781305079113_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285199047/9781285199047_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079250/9781305079250_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133109655/9781133109655_smallCoverImage.jpg)