Physics for Scientists and Engineers, Volume 1, Chapters 1-22
8th Edition
ISBN: 9781439048382
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 12, Problem 12.63AP
A 500-N uniform rectangular sign 4.00 m wide and 3.00 m high is suspended from a horizontal, 6.00-m-long, uniform. 100-N rod as indicated in Figure P12.47. The left end of the rod is supported by a hinge, and the right end is supported by a thin cable making a 30.0° angle with the vertical. (a) Find the tension T in the cable. (b) Find the horizontal and vertical components of force exerted on the left end of the rod by the hinge.
Figure P12.47
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Can you help me on both part a and b?
A 1000 N uniform boom is supported by a cable perpendicular to the boom, as in Figure P8.26. The boom is hinged at the bottom, and a 2100 N weight hangs from its top.
25
63°
Figure P8.26
(a) Find the tension in the supporting cable.
X N
(b) Find the components of the reaction force exerted on the boom by the hinge.
2
N (to the right)
3
N (upward)
ladder. (c) Find the tension in the rope when the monkey is
14. A 10.0-kg monkey climbs a uniform
O ladder with weight 1.20 x 10² N and
length L
ure P12.14. The ladder rests against
the wall and makes an angle of 0 =
60.0° with the ground. The upper
and lower ends of the ladder rest on
frictionless surfaces. The lower end is
connected to the wall by a horizontal
rope that is frayed and can support
a maximum tension of only 80.0 N.
(a) Draw a force diagram for the lad-
der. (b) Find the normal force exerted on the bottom of the
ladder. (c) Find the tension in the rope when the monkey is
two-thirds of the the ladder. (d) Find the maximum
distance d that the monkey can climb
the rope breaks.
3.00 m as shown in Fig-
%3D
%3D
Rope
Figure P12.14
way up
the ladder before
up
Chapter 12 Solutions
Physics for Scientists and Engineers, Volume 1, Chapters 1-22
Ch. 12 - Consider the object subject to the two forces of...Ch. 12 - Consider the object subject to the three forces in...Ch. 12 - A meterstick of uniform density is hung from a...Ch. 12 - For the three parts of this Quick Quiz, choose...Ch. 12 - The acceleration due to gravity becomes weaker by...Ch. 12 - A rod 7.0 in long is pivoted at a point 2.0 m from...Ch. 12 - Prob. 12.3OQCh. 12 - Two forces are acting on an object. Which of the...Ch. 12 - Prob. 12.5OQCh. 12 - A 20.0-kg horizontal plank 4.00 in long rests on...
Ch. 12 - Prob. 12.7OQCh. 12 - In analyzing the equilibrium of a flat, rigid...Ch. 12 - A certain wire, 3 m long, stretches by 1.2 mm when...Ch. 12 - The center of gravity of an ax is on the...Ch. 12 - A ladder stands on the ground, leaning against a...Ch. 12 - Prob. 12.2CQCh. 12 - (a) Give an example in which the net force acting...Ch. 12 - Prob. 12.4CQCh. 12 - Prob. 12.5CQCh. 12 - A girl has a large, docile dog she wishes to weigh...Ch. 12 - Prob. 12.7CQCh. 12 - What kind of deformation does a cube of Jell-O...Ch. 12 - What are the necessary conditions for equilibrium...Ch. 12 - Why is the following situation impossible? A...Ch. 12 - Prob. 12.3PCh. 12 - Prob. 12.4PCh. 12 - Your brother is opening a skateboard shop. He has...Ch. 12 - A circular pizza of radius R has a circular piece...Ch. 12 - Prob. 12.7PCh. 12 - Prob. 12.8PCh. 12 - Prob. 12.9PCh. 12 - Prob. 12.10PCh. 12 - A uniform beam of length 7.60 m and weight 4.50 ...Ch. 12 - A vaulter holds a 29.4-N pole in equilibrium by...Ch. 12 - A 15.0-in uniform ladder weighing 500 N rests...Ch. 12 - A uniform ladder of length L.and mass m1 rests...Ch. 12 - A flexible chain weighing 40.0 N hangs between two...Ch. 12 - A uniform beam of length L and mass m shown in...Ch. 12 - Figure P12.13 shows a claw hammer being used to...Ch. 12 - A 20.0-kg floodlight in a park is supported at the...Ch. 12 - Prob. 12.19PCh. 12 - Review. While Lost-a-Lot ponders his next move in...Ch. 12 - John is pushing his daughter Rachel in a...Ch. 12 - Prob. 12.22PCh. 12 - One end of a uniform 4.00-m-long rod of weight Fg...Ch. 12 - A 10.0-kg monkey climbs a uniform ladder with...Ch. 12 - A uniform plank of length 2.00 m and mass 30.0 kg...Ch. 12 - A steel wire of diameter 1 mm can support a...Ch. 12 - The deepest point in the ocean is in the Mariana...Ch. 12 - Assume Youngs modulus for bone is 1.50 1010 N/m2....Ch. 12 - A child slides across a floor in a pair of...Ch. 12 - Evaluate Youngs modulus for the material whose...Ch. 12 - Assume if the shear stress in steel exceeds about...Ch. 12 - When water freezes, it expands by about 9.00%....Ch. 12 - A 200-kg load is hung on a wire of length 4.00m,...Ch. 12 - A walkway suspended across a hotel lobby is...Ch. 12 - Review. A 2.00-m-long cylindrical steel wire with...Ch. 12 - Review. A 30.0-kg hammer, moving with speed 20.0...Ch. 12 - A bridge of length 50.0 m and mass 8.00 104 kg is...Ch. 12 - A uniform beam resting on two pivots has a length...Ch. 12 - Prob. 12.39APCh. 12 - The lintel of prestressed reinforced concrete in...Ch. 12 - Prob. 12.41APCh. 12 - When a person stands on tiptoe on one foot (a...Ch. 12 - A hungry bear weighing 700 N walks out on a beam...Ch. 12 - The following equations are obtained from a force...Ch. 12 - A uniform sign of weight Fg and width 2L hangs...Ch. 12 - A 1 200-N uniform boom at = 65 to the vertical is...Ch. 12 - Prob. 12.47APCh. 12 - Assume a person bends forward to lift a load with...Ch. 12 - A 10 000-N shark is supported by a rope attached...Ch. 12 - Why is the following situation impossible? A...Ch. 12 - A uniform beam of mass m is inclined at an angle ...Ch. 12 - Prob. 12.52APCh. 12 - When a circus performer performing on the rings...Ch. 12 - Figure P12.38 shows a light truss formed from...Ch. 12 - Prob. 12.55APCh. 12 - A stepladder of negligible weight is constructed...Ch. 12 - A stepladder of negligible weight is constructed...Ch. 12 - (a) Estimate the force with which a karate master...Ch. 12 - Two racquetballs, each having a mass of 170 g, are...Ch. 12 - Review. A wire of length L, Youngs modulus Y, and...Ch. 12 - Review. An aluminum wire is 0.850 m long and has a...Ch. 12 - Prob. 12.62APCh. 12 - A 500-N uniform rectangular sign 4.00 m wide and...Ch. 12 - A steel cable 3.00 cm2 in cross-sectional area has...Ch. 12 - A uniform pole is propped between the floor and...Ch. 12 - In the What If? section of Example 12.2, let d...Ch. 12 - Figure P12.67 shows a vertical force applied...Ch. 12 - A uniform rod of weight Fg and length L is...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Ruby, with mass 55.0 kg, is trying to reach a box on a high shelf by standing on her tiptoes. In this position, half her weight is supported by the normal force exerted by the floor on the toes of each foot as shown in Figure P14.75A. This situation can be modeled mechanically by representing the force on Rubys Achilles tendon with FA and the force on her tibia as FT as shown in Figure P14.75B. What is the value of the angle and the magnitudes of the forces FA and FT? FIGURE P14.75arrow_forwardProblems 33 and 34 are paired. One end of a uniform beam that weighs 2.80 102 N is attached to a wall with a hinge pin. The other end is supported by a cable making the angles shown in Figure P14.33. Find the tension in the cable. FIGURE P14.33 Problems 33 and 34.arrow_forwardA stepladder of negligible weight is constructed as shown in Figure P12.40, with AC = BC = = 4.00 m. A painter of mass m = 70.0 kg stands on the ladder d = 3.00 m from the bottom. Assuming the floor is frictionless, find (a) the tension in the horizontal bar DE connecting the two halves of the ladder, (b) the normal forces at A and B, and (c) the components of the reaction force at the single hinge C that the left half of the ladder exerts on the right half. Suggestion: Treat the ladder as a single object, but also treat each half of the ladder separately. Figure P12.40 Problems 40 and 41.arrow_forward
- A stepladder of negligible weight is constructed as shown in Figure P10.73, with AC = BC = = 4.00 m. A painter of mass m = 70.0 kg stands on the ladder d = 3.00 m from the bottom. Assuming the floor is frictionless, find (a) the tension in the horizontal bar DE connecting the two halves of the ladder, (b) the normal forces at A and B, and (c) the components of the reaction force at the single hinge C that the left half of the ladder exerts on the right half. Suggestion: Treat the ladder as a single object, but also treat each half of the ladder separately.arrow_forwardA 5.45-N beam of uniform density is 1.60 m long. The beam is supported at an angle of 35.0 by a cable attached to one end. There is a pin through the other end of the beam (Fig. P14.30). Use the values given in the figure to find the tension in the cable. FIGURE P14.30arrow_forwardWhy is the following situation impossible? A uniform beam of mass mk = 3.00 kg and length = 1.00 m supports blocks with masses m1 = 5.00 kg and m2 = 15.0 kg at two positions as shown in Figure P12.2. The beam rests on two triangular blocks, with point P a distance d = 0.300 m to the right of the center of gravity of the beam. The position of the object of mass m2 is adjusted along the length of the beam until the normal force on the beam at O is zero. Figure P12.2arrow_forward
- A stepladder of negligible weight is constructed as shown in Figure P10.73, with AC = BC = ℓ. A painter of mass m stands on the ladder a distance d from the bottom. Assuming the floor is frictionless, find (a) the tension in the horizontal bar DE connecting the two halves of the ladder, (b) the normal forces at A and B, and (c) the components of the reaction force at the single hinge C that the left half of the ladder exerts on the right half. Suggestion: Treat the ladder as a single object, but also treat each half of the ladder separately. Figure P10.73 Problems 73 and 74.arrow_forwardA 215-kg robotic arm at an assembly plant is extended horizontally (Fig. P14.32). The massless support rope attached at point B makes an angle of 15.0 with the horizontal, and the center of mass of the arm is at point C. a. What is the tension in the support rope? b. What are the magnitude and direction of the force exerted by the hinge A on the robotic arm to keep the arm in the horizontal position? FIGURE P14.32arrow_forwardA massless, horizontal beam of length L and a massless rope support a sign of mass m (Fig. P14.78). a. What is the tension in the rope? b. In terms of m, g, d, L, and , what are the components of the force exerted by the beam on the wall? FIGURE P14.78arrow_forward
- A uniform beam resting on two pivots has a length L = 6.00 m and mass M = 90.0 kg. The pivot under the left end exerts a normal force n1 on the beam, and the second pivot located a distance = 4.00 m from the left end exerts a normal force n2. A woman of mass m = 55.0 kg steps onto the left end of the beam and begins walking to the right as in Figure P10.28. The goal is to find the womans position when the beam begins to tip. (a) What is the appropriate analysis model for the beam before it begins to tip? (b) Sketch a force diagram for the beam, labeling the gravitational and normal forces acting on the beam and placing the woman a distance x to the right of the first pivot, which is the origin. (c) Where is the woman when the normal force n1 is the greatest? (d) What is n1 when the beam is about to tip? (e) Use Equation 10.27 to find the value of n2 when the beam is about to tip. (f) Using the result of part (d) and Equation 10.28, with torques computed around the second pivot, find the womans position x when the beam is about to tip. (g) Check the answer to part (e) by computing torques around the first pivot point. Figure P10.28arrow_forwardAt a museum, a 1300-kg model aircraft is hung from a lightweight beam of length 12.0 m that is free to pivot about its base and is supported by a massless cable (Fig. P14.38). Ignore the mass of the beam. a. What is the tension in the section of the cable between the beam and the wall? b. What are the horizontal and vertical forces that the pivot exerts on the beam? FIGURE P14.38 (a) From the free-body diagram, the angle that the string tension makes with the beam is = 55.0 + 18.0 = 73.0, and the perpendicular component of the string tension is FT sin73.0. Summing torques around the base of the rod gives (Eq. 14.2): =0:(12.0m)(1300kg)(9.81m/s2)cos55.0+FT(12.0m)sin73.0=0FT=(12.0m)(1300kg)(9.81m/s2)cos55.0(12.0m)sin73.0FT=7.65103N Figure P14.38ANS (b) Using force balance (Eq. 14.1): Fx=0:FHFTcos18.0=0FH=FTcos18.0=[(12.0m)(1300kg)(9.81m/s2)cos55.0(12.0m)sin73.0]cos18.0=7.27103NFy=0:FVFTsin18.0(1300kg)(9.81m/s2)=0 FV=FTsin18.0+(1300kg)gFV=[(12.0m)(1300kg)(9.81m/s2)cos55.0(12.0m)sin73.0]sin18.0+(1300kg)(9.81m/s2)FV=1.51104Narrow_forwardI need help with all parts.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
SIMPLE HARMONIC MOTION (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=XjkUcJkGd3Y;License: Standard YouTube License, CC-BY