Physics for Scientists and Engineers, Volume 1, Chapters 1-22
8th Edition
ISBN: 9781439048382
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 12, Problem 12.19P
(a)
To determine
The tension in the cable.
(b)
To determine
The horizontal component acting on the bridge at hinge.
(c)
To determine
The vertical component acting on the bridge at hinge.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A solid sphere, made of acrylic plastic with a density of 1.1 g/cm3,1.1 g/cm3, has a radius of 5.0 cm.5.0 cm. A very small "eyelet" is screwed into the surface of the sphere and a horizontal support rod is passed through the eyelet, allowing the sphere to pivot around this fixed axis, as shown in the figure. If the sphere is displaced slightly from equilibrium on the surface of Earth, determine the period ?T of its harmonic motion when it is released.
Review Conceptual Example 7 before starting this problem. A uniform plank of length 5.0 m and weight 225 N rests horizontally on
two supports, with 1.1 m of the plank hanging over the right support (see the drawing). To what distance x can a person who weighs
375 N walk on the overhanging part of the plank before it just begins to tip?
X =
i
41.1 m²
You’re carrying a 3.6-m-long, 25 kg pole to a construction site when you decide to stop for a rest. You place one end of the pole on a fence post and hold the other end of the pole 35 cm from its tip. How much force must you exert to keep the pole motionless in a horizontal position?
Chapter 12 Solutions
Physics for Scientists and Engineers, Volume 1, Chapters 1-22
Ch. 12 - Consider the object subject to the two forces of...Ch. 12 - Consider the object subject to the three forces in...Ch. 12 - A meterstick of uniform density is hung from a...Ch. 12 - For the three parts of this Quick Quiz, choose...Ch. 12 - The acceleration due to gravity becomes weaker by...Ch. 12 - A rod 7.0 in long is pivoted at a point 2.0 m from...Ch. 12 - Prob. 12.3OQCh. 12 - Two forces are acting on an object. Which of the...Ch. 12 - Prob. 12.5OQCh. 12 - A 20.0-kg horizontal plank 4.00 in long rests on...
Ch. 12 - Prob. 12.7OQCh. 12 - In analyzing the equilibrium of a flat, rigid...Ch. 12 - A certain wire, 3 m long, stretches by 1.2 mm when...Ch. 12 - The center of gravity of an ax is on the...Ch. 12 - A ladder stands on the ground, leaning against a...Ch. 12 - Prob. 12.2CQCh. 12 - (a) Give an example in which the net force acting...Ch. 12 - Prob. 12.4CQCh. 12 - Prob. 12.5CQCh. 12 - A girl has a large, docile dog she wishes to weigh...Ch. 12 - Prob. 12.7CQCh. 12 - What kind of deformation does a cube of Jell-O...Ch. 12 - What are the necessary conditions for equilibrium...Ch. 12 - Why is the following situation impossible? A...Ch. 12 - Prob. 12.3PCh. 12 - Prob. 12.4PCh. 12 - Your brother is opening a skateboard shop. He has...Ch. 12 - A circular pizza of radius R has a circular piece...Ch. 12 - Prob. 12.7PCh. 12 - Prob. 12.8PCh. 12 - Prob. 12.9PCh. 12 - Prob. 12.10PCh. 12 - A uniform beam of length 7.60 m and weight 4.50 ...Ch. 12 - A vaulter holds a 29.4-N pole in equilibrium by...Ch. 12 - A 15.0-in uniform ladder weighing 500 N rests...Ch. 12 - A uniform ladder of length L.and mass m1 rests...Ch. 12 - A flexible chain weighing 40.0 N hangs between two...Ch. 12 - A uniform beam of length L and mass m shown in...Ch. 12 - Figure P12.13 shows a claw hammer being used to...Ch. 12 - A 20.0-kg floodlight in a park is supported at the...Ch. 12 - Prob. 12.19PCh. 12 - Review. While Lost-a-Lot ponders his next move in...Ch. 12 - John is pushing his daughter Rachel in a...Ch. 12 - Prob. 12.22PCh. 12 - One end of a uniform 4.00-m-long rod of weight Fg...Ch. 12 - A 10.0-kg monkey climbs a uniform ladder with...Ch. 12 - A uniform plank of length 2.00 m and mass 30.0 kg...Ch. 12 - A steel wire of diameter 1 mm can support a...Ch. 12 - The deepest point in the ocean is in the Mariana...Ch. 12 - Assume Youngs modulus for bone is 1.50 1010 N/m2....Ch. 12 - A child slides across a floor in a pair of...Ch. 12 - Evaluate Youngs modulus for the material whose...Ch. 12 - Assume if the shear stress in steel exceeds about...Ch. 12 - When water freezes, it expands by about 9.00%....Ch. 12 - A 200-kg load is hung on a wire of length 4.00m,...Ch. 12 - A walkway suspended across a hotel lobby is...Ch. 12 - Review. A 2.00-m-long cylindrical steel wire with...Ch. 12 - Review. A 30.0-kg hammer, moving with speed 20.0...Ch. 12 - A bridge of length 50.0 m and mass 8.00 104 kg is...Ch. 12 - A uniform beam resting on two pivots has a length...Ch. 12 - Prob. 12.39APCh. 12 - The lintel of prestressed reinforced concrete in...Ch. 12 - Prob. 12.41APCh. 12 - When a person stands on tiptoe on one foot (a...Ch. 12 - A hungry bear weighing 700 N walks out on a beam...Ch. 12 - The following equations are obtained from a force...Ch. 12 - A uniform sign of weight Fg and width 2L hangs...Ch. 12 - A 1 200-N uniform boom at = 65 to the vertical is...Ch. 12 - Prob. 12.47APCh. 12 - Assume a person bends forward to lift a load with...Ch. 12 - A 10 000-N shark is supported by a rope attached...Ch. 12 - Why is the following situation impossible? A...Ch. 12 - A uniform beam of mass m is inclined at an angle ...Ch. 12 - Prob. 12.52APCh. 12 - When a circus performer performing on the rings...Ch. 12 - Figure P12.38 shows a light truss formed from...Ch. 12 - Prob. 12.55APCh. 12 - A stepladder of negligible weight is constructed...Ch. 12 - A stepladder of negligible weight is constructed...Ch. 12 - (a) Estimate the force with which a karate master...Ch. 12 - Two racquetballs, each having a mass of 170 g, are...Ch. 12 - Review. A wire of length L, Youngs modulus Y, and...Ch. 12 - Review. An aluminum wire is 0.850 m long and has a...Ch. 12 - Prob. 12.62APCh. 12 - A 500-N uniform rectangular sign 4.00 m wide and...Ch. 12 - A steel cable 3.00 cm2 in cross-sectional area has...Ch. 12 - A uniform pole is propped between the floor and...Ch. 12 - In the What If? section of Example 12.2, let d...Ch. 12 - Figure P12.67 shows a vertical force applied...Ch. 12 - A uniform rod of weight Fg and length L is...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- To get up on the roof, a person (mass 82.0 kg) places a 6.60 m aluminum ladder (mass 11.0 kg) against the house on a concrete pad with the base of the ladder 2.00 m from the house. The ladder rests against a plastic rain gutter, which we can assume to be frictionless. The center of mass of the ladder is 2 m from the bottom. The person is standing 3 m from the bottom. What are the magnitudes (in N) of the forces on the ladder at the top and bottom? top N bottom Narrow_forwardFind the x - and y -coordinates of the center of gravity for the boomerang in Figure P8.12a. modeling the boomerang as in Figure P8.12b, where each uniform leg of the model has a length of 0.300 m and a mass of0.250 kg. (Note: Treat the legs like thin rods.)arrow_forwardAnt-Man is walking around on top of a wooden plank that rests atop two thin, vertical steel pillars, which are bolted into the ground. Ant-Man's mass is m₁ = 80.0 kg, but he is small enough to be treated as a point particle. The plank (m₂ = 11.7 kg) has a length of L = 2.44 m, with the left end flush against the edge of the left pillar. The separation distance between the pillars is d 1.50 m. T Suppose that Ant-Man walks far enough out from the right pillar so that the plank is just about to start rotating. What will be the magnitude of the force from each of the pillars on the plank at this time? (Hint: begin your analysis by thinking about the torques acting on the plank, and note that the forces from the two pillars are not the same.) How far out from the right pillar could Ant-Man walk before the plank starts to rotate?arrow_forward
- Beverage engineering. The pull tab was a major advance in the engineering design of beverage containers. The tab pivots on a central bolt in the can’s top.When you pull upward on one end of the tab, the other end presses downward on a portion of the can’s top that has been scored. If you pull upward with a 10 N force, what force magnitude acts on the scored section? (You will need to examine a can with a pull tab.)arrow_forwardIn the figure, a lead brick rests horizontally on cylinders A and B. The areas of the top faces of the cylinders are related by A4= 2.8 Ag; the Young's moduli of the cylinders are related by Ea= 2.3 Eg. The cylinders had identical lengths before the brick was placed on them. What fraction of the brick's mass is supported (a) by cylinder A and (b) by cylinder B? The horizontal distances between the center of mass of the brick and the centerlines of the cylinders are dafor cylinder A and d; for cylinder B. (c) What is the ratio da/dg? com of brick A (a) Number i Units (b) Number i Units (c) Number i Unitsarrow_forwardA diving board of length 4.00 m is supported at a point 1.50 m from the end, and a diver weighing 500 N stands at the free end. The horizontal diving board is supported at the point 1.50 meter away from its left end. A diver stands at the free end (the right end), which is 2.50 meters away from the point where the board is supported. The diving board is of uniform cross section and weighs 400 N. Find the magnitude of the force at the left-hand end Find the direction of the force at the left-hand end Find the magnitude of the force at the support point K-1.5 m * – 2.5 marrow_forward
- You have a cylinder. You don't know what its internal structure looks like, but you plan to roll it down a ramp, as in this week's procedure. The ramp is 1 m long, and is elevated at an angle of 15°. The mass of the cylinder is 450 g and its diameter is 2.1 cm.arrow_forwardWe can model a pine tree in the forest as having a compact canopy at the top of a relatively bare trunk. Wind blowing on the top of the tree exerts a horizontal force, and thus a torque that can topple the tree if there is no opposing torque. Suppose a tree's canopy presents an area of 9.0 m2m2 to the wind centered at a height of 7.0 mm above the ground. (These are reasonable values for forest trees. *Part A If the wind blows at 6.5 m/sm/s, what is the magnitude of the drag force of the wind on the canopy? Assume a drag coefficient of 0.50 and the density of air of 1.2 kg/m3kg/m3. Express your answer with the appropriate units. *Part B What torque does this force exert on the tree, measured about the point where the trunk meets the ground? Express your answer with the appropriate units.arrow_forward2arrow_forward
- A tree contractor has been hired by a homeowner to remove a damaged tree from a previous storm. The top of the tree broke off, leaving the trunk in the ground. The arborist will remove the tree by attaching a rope near the top and cutting the base close to the ground. The scenario is shown in the figure. The distances in the figure are z = 12.0 m, h y = 4.83 m and x = 11.96 m. If the arborist pulls on the rope with a force of magnitude F = 35.1 N, write the expression for the torque 7 with respect to the base P of the tree using ijk unit vector notation, 7 = txi + Tyj + T₂k where Tx, Ty, and Tz are the values of the torque components in the x-, y-, and z-directions, respectively. = 1.45 m, k P X T harrow_forwardA diver dives from a cliff when her center of gravity is 46 feet above the surface of the water. Her initial vertical velocity leaving the cliff is 9 feet per second. After how many seconds does her center of gravity enter the water?arrow_forwardA 50 kg rod has a box hanging from it and is suspended from the ceiling by a string. The entire system is in static equilibrium. A = 6 cm & B = 16 cm. The dark circle represents the center of mass of the rod. What is the tension of the string and what is the mass of the box?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning