Physics for Scientists and Engineers, Technology Update (No access codes included)
9th Edition
ISBN: 9781305116399
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 12, Problem 12.4CQ
To determine
The reason a person can’t bend forward without falling by putting their heels firmly against the wall.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A ladder, leaning against a wall, makes a 60° angle with theground. When is it more likely to slip: when a person standson the ladder near the top or near the bottom? Explain.
A person bending forward to lift a load "with his back" (Figure a) rather than with his knees" can be injured by large forces exerted on the muscles and vertebrae. The spine pivots
mainly at the fifth lumbar vertebra, with the principal supporting force provided by the erector spinalis muscle in the back. To see the magnitude of the forces involved, and to
understand why back problems are common among humans, consider the model shown in Figure b, of a person bending forward to lift a W-195-N object. The spine and upper
body are represented as a uniform horizontal rod of weight W-295 N pivoted at the base of the spine. The erector spinalls muscle, attached at a point two-thirds of the way up the
spine, maintains the position of the back. The angle between the spine and this muscle is 12.0°
Back muscle
Pivot
R₂
T120
T
W
W₂
0
(a) Find the tension in the back muscle.
KN
D
(b) Find the compressional force in the spine. (Enter the magnitude.)
KN
When you turn while running, you must lean in the direction of the turn or risk falling over. If you lean left as you turn left, why don’t you fall over to the left?
Chapter 12 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
Ch. 12 - Consider the object subject to the two forces of...Ch. 12 - Consider the object subject to the three forces in...Ch. 12 - A meterstick of uniform density is hung from a...Ch. 12 - For the three parts of this Quick Quiz, choose...Ch. 12 - The acceleration due to gravity becomes weaker by...Ch. 12 - A rod 7.0 in long is pivoted at a point 2.0 m from...Ch. 12 - Prob. 12.3OQCh. 12 - Two forces are acting on an object. Which of the...Ch. 12 - Prob. 12.5OQCh. 12 - A 20.0-kg horizontal plank 4.00 in long rests on...
Ch. 12 - Prob. 12.7OQCh. 12 - In analyzing the equilibrium of a flat, rigid...Ch. 12 - A certain wire, 3 m long, stretches by 1.2 mm when...Ch. 12 - The center of gravity of an ax is on the...Ch. 12 - A ladder stands on the ground, leaning against a...Ch. 12 - Prob. 12.2CQCh. 12 - (a) Give an example in which the net force acting...Ch. 12 - Prob. 12.4CQCh. 12 - Prob. 12.5CQCh. 12 - A girl has a large, docile dog she wishes to weigh...Ch. 12 - Prob. 12.7CQCh. 12 - What kind of deformation does a cube of Jell-O...Ch. 12 - What are the necessary conditions for equilibrium...Ch. 12 - Why is the following situation impossible? A...Ch. 12 - Prob. 12.3PCh. 12 - Prob. 12.4PCh. 12 - Your brother is opening a skateboard shop. He has...Ch. 12 - A circular pizza of radius R has a circular piece...Ch. 12 - Prob. 12.7PCh. 12 - Prob. 12.8PCh. 12 - Prob. 12.9PCh. 12 - Prob. 12.10PCh. 12 - A uniform beam of length 7.60 m and weight 4.50 ...Ch. 12 - A vaulter holds a 29.4-N pole in equilibrium by...Ch. 12 - A 15.0-in uniform ladder weighing 500 N rests...Ch. 12 - A uniform ladder of length L.and mass m1 rests...Ch. 12 - A flexible chain weighing 40.0 N hangs between two...Ch. 12 - A uniform beam of length L and mass m shown in...Ch. 12 - Figure P12.13 shows a claw hammer being used to...Ch. 12 - A 20.0-kg floodlight in a park is supported at the...Ch. 12 - Prob. 12.19PCh. 12 - Review. While Lost-a-Lot ponders his next move in...Ch. 12 - John is pushing his daughter Rachel in a...Ch. 12 - Prob. 12.22PCh. 12 - One end of a uniform 4.00-m-long rod of weight Fg...Ch. 12 - A 10.0-kg monkey climbs a uniform ladder with...Ch. 12 - A uniform plank of length 2.00 m and mass 30.0 kg...Ch. 12 - A steel wire of diameter 1 mm can support a...Ch. 12 - The deepest point in the ocean is in the Mariana...Ch. 12 - Assume Youngs modulus for bone is 1.50 1010 N/m2....Ch. 12 - A child slides across a floor in a pair of...Ch. 12 - Evaluate Youngs modulus for the material whose...Ch. 12 - Assume if the shear stress in steel exceeds about...Ch. 12 - When water freezes, it expands by about 9.00%....Ch. 12 - A 200-kg load is hung on a wire of length 4.00m,...Ch. 12 - A walkway suspended across a hotel lobby is...Ch. 12 - Review. A 2.00-m-long cylindrical steel wire with...Ch. 12 - Review. A 30.0-kg hammer, moving with speed 20.0...Ch. 12 - A bridge of length 50.0 m and mass 8.00 104 kg is...Ch. 12 - A uniform beam resting on two pivots has a length...Ch. 12 - Prob. 12.39APCh. 12 - The lintel of prestressed reinforced concrete in...Ch. 12 - Prob. 12.41APCh. 12 - When a person stands on tiptoe on one foot (a...Ch. 12 - A hungry bear weighing 700 N walks out on a beam...Ch. 12 - The following equations are obtained from a force...Ch. 12 - A uniform sign of weight Fg and width 2L hangs...Ch. 12 - A 1 200-N uniform boom at = 65 to the vertical is...Ch. 12 - Prob. 12.47APCh. 12 - Assume a person bends forward to lift a load with...Ch. 12 - A 10 000-N shark is supported by a rope attached...Ch. 12 - Why is the following situation impossible? A...Ch. 12 - A uniform beam of mass m is inclined at an angle ...Ch. 12 - Prob. 12.52APCh. 12 - When a circus performer performing on the rings...Ch. 12 - Figure P12.38 shows a light truss formed from...Ch. 12 - Prob. 12.55APCh. 12 - A stepladder of negligible weight is constructed...Ch. 12 - A stepladder of negligible weight is constructed...Ch. 12 - (a) Estimate the force with which a karate master...Ch. 12 - Two racquetballs, each having a mass of 170 g, are...Ch. 12 - Review. A wire of length L, Youngs modulus Y, and...Ch. 12 - Review. An aluminum wire is 0.850 m long and has a...Ch. 12 - Prob. 12.62APCh. 12 - A 500-N uniform rectangular sign 4.00 m wide and...Ch. 12 - A steel cable 3.00 cm2 in cross-sectional area has...Ch. 12 - A uniform pole is propped between the floor and...Ch. 12 - In the What If? section of Example 12.2, let d...Ch. 12 - Figure P12.67 shows a vertical force applied...Ch. 12 - A uniform rod of weight Fg and length L is...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Why is it important to secure file cabinets to the floor, especially cabinets with heavy loads in top drawers?arrow_forwardConsider a ladder on a horizontal floor and leaning against a vertical wall. Which of the following is necessary for the ladder to be in equilibrium? both wall and floor must be rough the ladder can be in equilibrium even both floor and wall are perfectly smooth Rough floor Rough wallarrow_forwardA woman wearing a stiletto heel shoes (heel pointed shoes) gets tired and will feel pain in her legs easily. Why so?arrow_forward
- Assuming your feet are not held down, which is more difficult: doing sit-ups with your knees bent or with your legs straight out?arrow_forwardThe 3 m long uniform plank is supported by a fulcrum at the midpoint. Where should a 45 kg student must be from the midpoint to be able to balance the plank? 45 kg X = ? +0.4 m +0.5 m 30 kg 40 kgarrow_forwardThe bones of the forearm (radius and ulna) are hinged to the humerus at the elbow. The biceps muscle connects to the bones of the forearm about 2.15 cm beyond the joint. ,Biceps muscle Assume the forearm has a mass of 2.35 kg and a length of 0.445 m. When the humerus and the biceps are nearly vertical and the forearm is horizontal, if a person wishes to Humerus- hold an object of mass 5.75 kg so that her forearm remains motionless, what is the force exerted by the biceps muscle? Radius M Elbow- Ulna force: N Handarrow_forward
- We have two masses balanced on a centered beam on a fulcrum. If m1 = 10 kg, and m2 = 20 kg, what should the length of the lever arm, r2, be to keep everything balanced when r1 = 10 meters?arrow_forwardTake a piece of modeling clay and put it on a table, then mash a cylinder down into it so that a ruler can balance on the round side of the cylinder while everything remains still. Put a penny 8 cm away from the pivot. Where would you need to put two pennies to balance? Three pennies?arrow_forwardThe bones of the forearm (radius and ulna) are hinged to the humerus at the elbow. The biceps muscle connects to the bones of the forearm about 2.15 cm beyond the joint. Assume the forearm has a mass 2.25 kg and a length of 0.425 m. When the humerus and the biceps are nearly vertical and the forearm is horizontal, if a person wishes to hold an object of mass 7.35 kg so that her forearm remains motionless, what is the force F exerted by the biceps muscle? Image is attached below. Please show all work.arrow_forward
- The bones of the forearm (radius and ulna) are hinged to the humerus at the elbow. The biceps muscle connects to the bones of the forearm about 2.15 cm beyond the joint. Assume the forearm has a mass of 2.35 kg and a length of 0.445 m.When the humerus and the biceps are nearly vertical and the forearm is horizontal, if a person wishes to hold an object of mass 4.95 kg so that her forearm remains motionless, what is the force exerted by the biceps muscle?arrow_forwardAs a part of his daily workout routine, he lifts 10-kg dumbbells on each hand. His hands and forearms weigh 4 kg each. If the length of each of his forearms and hands are 0.5 m, determine the force exerted by his muscles? Assume that the center of gravity of the forrearms are in the middle.arrow_forwardA person bending forward to lift a load "with his back" (Figure a) rather than "with his knees" can be injured by large forces exerted on the muscles and vertebrae. The spine pivots mainly at the fifth lumbar vertebra, with the principal supporting force provided by the erector spinalis muscle in the back. To see the magnitude of the forces involved, and to understand why back problems are common among humans, consider the model shown in Figure b, of a person bending forward to lift a Wo = 215–N object. The spine and upper body are represented as a uniform horizontal rod of weight Wb = 330 N pivoted at the base of the spine. The erector spinalis muscle, attached at a point two-thirds of the way up the spine, maintains the position of the back. The angle between the spine and this muscle is 12.0°. (a) Find the tension in the back muscle. (b) Find the compressional force in the spine. (Enter the magnitude.)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
What is Torque? | Physics | Extraclass.com; Author: Extraclass Official;https://www.youtube.com/watch?v=zXxrAJld9mo;License: Standard YouTube License, CC-BY