Concept explainers
Disk A rotates in a horizontal plane about a vertical axis at the
(a)
Find the position of the slider and horizontal force exerted on the slider by disk at
Answer to Problem 12.133RP
The position of the slider at
The horizontal force exerted on the slider by disk at
Explanation of Solution
Given information:
The polar coordinate
The mass
The distance
The spring constant (k) is 100 N/m.
Calculation:
Consider the Position of the slider is in point O
Find the displacement of spring when
Consider distance of the slider (r) from the point O is 500 mm.
Find the displacement of spring when
Substitute 500 mm for r.
Find the restoring force (F) of spring when
Substitute 100 N/m for k and 500 mm for
Sketch the free body diagram and kinetic diagram of forces on disk A and spring as shown in in Figure (1).
Refer Figure (1).
Write the equation of radial component of acceleration
Apply Newton’s law of equation along radial direction.
The radial force is equal to the restoring force.
Find the equation of restoring force (F).
Substitute
Substitute
Write the equation of
Integrate Equation (1) to find
Use Equation (1) to substitute for
Slider B is at initial position when
Write
Integrate Equation (4) to find
Use Equation (3) to substitute for
Find the position of the slider at
Use Equation (4) to substitute for
Thus, the position of the slider at
Refer Figure 1.
Apply Newton’s law of Equation along transverse direction.
Write the transverse component of acceleration
Here,
The transverse force is the horizontal force exerted on the slider by disk.
The disk is rotating at constant rate. Therefore, the polar coordinate of transverse acceleration,
Find the horizontal force exerted on the slider by disk at
Write the equation of transverse force
Substitute
Substitute 0 for
Substitute Equation (3) in Equation (7).
Thus, the horizontal force exerted on the slider by disk at
(b)
Find the position of the slider and horizontal force exerted on the slider by disk at
Answer to Problem 12.133RP
The position of the slider at
The horizontal force exerted on the slider by disk at
Explanation of Solution
Calculation:
Consider the Position of the slider is in point O
Find the displacement of spring when
Consider distance of the slider (r) from the point O is 500 mm.
Find the displacement of spring when
Substitute 500 mm for r.
Find the restoring force (F) of spring when
Substitute 200 N/m for k and 500 mm for
Refer Figure (1).
Write the equation of radial component of acceleration
Apply Newton’s law of equation along radial direction.
The radial force is equal to the restoring force.
Find the equation of restoring force (F).
Substitute
Substitute
Write the equation of radial velocity of the slider in terms of r.
Here,
Write equation of the rate of change of position coordinate in terms of differential equation.
Apply differentiation to Equation (8)
Rewrite Equation (10) by multiplying and dividing the right-hand side by dr.
Substitute Equation (10) to rewrite Equation (11).
Substitute Equation (8) to rewrite Equation (12).
Substitute
Apply the limits to integrate the Equation (14).
At the time of instant
Substitute Equation (8) in Equation (15).
Integrate Equation (16).
Use spherical polar coordinates and choose,
Differentiate Equation (18).
Rewrite Equation (18).
Rewrite Equation (20) for
Use Equation (20) and (21) to change the values of limit in Equation (17).
Apply the trigonometric formula of
Use Equation (23) to rewrite Equation (22).
Substitute 0.5m for
Thus, the position of the slider at
Find the radial polar coordinate of velocity using Equation (24).
Differentiate Equation (24) with respect to t.
Substitute 500 mm for
Find the horizontal force exerted on the slider by disk at
Substitute
Substitute 0.1 s for t and
Thus, the horizontal force exerted on the slider by disk at
Want to see more full solutions like this?
Chapter 12 Solutions
Connect 1 Semester Access Card for Vector Mechanics for Engineers: Statics and Dynamics
Additional Engineering Textbook Solutions
Vector Mechanics For Engineers
BASIC BIOMECHANICS
Database Concepts (8th Edition)
Thermodynamics: An Engineering Approach
Mechanics of Materials (10th Edition)
Modern Database Management
- An external pressure of 12 MPa is applied to a closed-end thick cylinder of internal diameter 150 mm and external diameter 300 mm. If the maximum hoop stress on the inner surface of the cylinder is limited to 30 MPa: (a) What maximum internal pressure can be applied to the cylinder? (b) Sketch the variation of hoop and radial stresses across the cylinder wall. (c) What will be the change in the outside diameter when the above pressure is applied? [Take E = 207 GPa and v = 0.29]arrow_forwardso A 4 I need a detailed drawing with explanation し i need drawing in solution motion is as follows; 1- Dwell 45°. Plot the displacement diagram for a cam with flat follower of width 14 mm. The required 2- Rising 60 mm in 90° with Simple Harmonic Motion. 3- Dwell 90°. 4- Falling 60 mm for 90° with Simple Harmonic Motion. 5- Dwell 45°. cam is 50 mm. Then design the cam profile to give the above displacement diagram if the minimum circle diameter of the か ---2-125 750 x2.01 98Parrow_forwardFigure below shows a link mechanism in which the link OA rotates uniformly in an anticlockwise direction at 10 rad/s. the lengths of the various links are OA=75 mm, OB-150 mm, BC=150 mm, CD-300 mm. Determine for the position shown, the sliding velocity of D. A 45 B Space Diagram o NTS (Not-to-Scale) C Darrow_forward
- I need a detailed drawing with explanation so Solle 4 يكا Pax Pu + 96** motion is as follows; 1- Dwell 45°. Plot the displacement diagram for a cam with flat follower of width 14 mm. The required 2- Rising 60 mm in 90° with Simple Harmonic Motion. 3- Dwell 90°. 4- Falling 60 mm for 90° with Simple Harmonic Motion. 5- Dwell 45°. cam is 50 mm. Then design the cam profile to give the above displacement diagram if the minimum circle diameter of the 55 ---20125 750 X 2.01 1989arrow_forwardAshaft fitted with a flywheel rotates at 300 rpm. and drives a machine. The torque required to drive the machine varies in a cyclic manner over a period of 2 revolutions. The torque drops from 20,000 Nm to 10,000 Nm uniformly during 90 degrees and remains constant for the following 180 degrees. It then rises uniformly to 35,000 Nm during the next 225 degrees and after that it drops to 20,000 in a uniform manner for 225 degrees, the cycle being repeated thereafter. Determine the power required to drive the machine and percentage fluctuation in speed, if the driving torque applied to the shaft is constant and the mass of the flywheel is 12 tonnes with radius of gyration of 500 mm. What is the maximum angular acceleration of the flywheel. 35,000 TNM 20,000 10,000 0 90 270 495 Crank angle 8 degrees 720arrow_forwardchanism shown in figure below, the crank OA rotates at 60 RPM counterclockwise. The velocity diagram is also drawn to scale (take dimensions from space diagram). Knowing that QCD is rigid plate, determine: a. Linear acceleration of slider at B, b. Angular acceleration of the links AC, plate CQD, and BD. D Space Diagram Scale 1:10 A ES a o,p,g b Velocity Diagram Scale 50 mm/(m/s) darrow_forward
- A thick closed cylinder, 100 mm inner diameter and 200 mm outer diameter is subjected to an internal pressure of 230 MPa and outer pressure of 70 MPa. Modulus of elasticity, E=200 GPa. and Poisson's ratio is 0.3, determine: i) The maximum hoop stress ii) The maximum shear stress iii) The new dimension of the outer diameter due to these inner and outer pressures.arrow_forwardA ә レ shaft fitted with a flywheel rotates at 300 rpm. and drives a machine. The torque required to drive the machine varies in a cyclic manner over a period of 2 revolutions. The torque drops from 20,000 Nm to 10,000 Nm uniformly during 90 degrees and remains constant for the following 180 degrees. It then rises uniformly to 35,000 Nm during the next 225 degrees and after that it drops to 20,000 in a uniform manner for 225 degrees, the cycle being repeated thereafter. Determine the power required to drive the machine and percentage fluctuation in speed, if the driving torque applied to the shaft is constant and the mass of the flywheel is 12 tonnes with radius of gyration of 500 mm. What is the maximum angular acceleration of the flywheel. 35,000 TNm 20,000 10,000 495 Crank angle 8 degrees 270 0 90 か ---20125 750 X 2.01 44 720 sarrow_forwardThe gas tank is made from A-36 steel (σy = 250 MPa) and has an inner diameter of 3.50 m. If the tank is designed to withstand a pressure of 1.2 MPa, determine the required minimum wall thickness to the nearest millimeter using (a) The maximum-shear-stress theory (b) Maximum distortion- energy theory. Apply a factor of safety of 1.5 against yielding.arrow_forward
- ә レ Figure below shows a link mechanism in which the link OA rotates uniformly in an anticlockwise direction at 10 rad/s. the lengths of the various links are OA=75 mm, OB-150 mm, BC=150 mm, CD-300 mm. Determine for the position shown, the sliding velocity of D. A A B # Space Diagram o NTS (Not-to-Scale) C 10 =--20125 735) 750 x2.01 اهarrow_forward2 レ Tanism in which the link OA mm. O anticlockwise direction at 10 rad/s, the lengths of the various links are OA=75mm, OB=150mm, BC=150mm,CD=300mm. Determine for the position shown, the sliding velocity of D. A A Space Diagram o NT$ (Not-to-Scale) B # C か 750 x2.01 165 79622arrow_forwardAshaft fitted with a flywheel rotates at 300 rpm. and drives a machine. The torque required to drive the machine varies in a cyclic manner over a period of 2 revolutions. The torque drops from 20,000 Nm to 10,000 Nm uniformly during 90 degrees and remains constant for the following 180 degrees. It then rises uniformly to 35,000 Nm during the next 225 degrees and after that it drops to 20,000 in a uniform manner for 225 degrees, the cycle being repeated thereafter. Determine the power required to drive the machine and percentage fluctuation in speed, if the driving torque applied to the shaft is constant and the mass of the flywheel is 12 tonnes with radius of gyration of 500 mm. What is the maximum angular acceleration of the flywheel. 35,000 TNM 20,000 10,000 0 90 270 495 Crank angle 8 degrees 720arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY