
Concept explainers
(a)
Find the increase in speed required at point A for the satellite to achieve the escape velocity and enter a parabolic orbit.
(a)

Answer to Problem 12.104P
The increase in speed required at point A for the satellite to achieve the escape velocity and enter a parabolic orbit is
Explanation of Solution
Given information:
The altitude of circular orbit of the satellite from the surface of the earth (r) is 19,110 km.
The radius of the earth (R) is 6,370 km.
Calculation:
Find the equation of product (GM) of the constant of gravitation G and the mass M of the earth using the equation:
Substitute
Find the altitude of circular orbit of the satellite
Substitute 6,370 km for R and 19,110 km for r.
Find the velocity of satellite
Substitute
Find the escape velocity of satellite
Substitute
Find the decrease in speed
Substitute
Thus, the increase in speed required at point A for the satellite to achieve the escape velocity and enter a parabolic orbit is
(b)
Find the decrease in speed required at point A for the satellite to enter an elliptic orbit of minimum altitude 6370 km.
(b)

Answer to Problem 12.104P
The decrease in speed required at point A for the satellite to enter an elliptic orbit of minimum altitude 6,370 km is
Explanation of Solution
Calculation:
Find the radius
Find the angular momentum per unit mass h using the equation.
Substitute
Find the velocity at A
Substitute
Find the decrease
Substitute
(c)
Find the eccentricity of the elliptic orbit.
(c)

Answer to Problem 12.104P
The eccentricity of the elliptic orbit is
Explanation of Solution
Calculation:
Write the equation of angle at B.
Apply cosine on both sides.
Find the constant C using the equation:
Substitute
Substitute
Substitute
Find the eccentricity
Substitute
Thus, the eccentricity of the elliptic orbit is
Want to see more full solutions like this?
Chapter 12 Solutions
Connect 1 Semester Access Card for Vector Mechanics for Engineers: Statics and Dynamics
- from this problem a want you to help to draw the shear moment and the bending momentarrow_forwardreaction at a is 1.6 wL (pos) handwritten solutions only please. correct answers upvotedarrow_forward1 8 4 Add numbers so that the sum of any row or column equals .30 Use only these numbers: .1.2.3.4.5.6.10.11.12.12.13.14.14arrow_forward
- Uppgift 2 (9p) I77777 20 kN 10 kN/m 4 [m] 2 2 Bestäm tvärkrafts- och momentdiagram för balken i figuren ovan. Extrempunkter ska anges med både läge och värde i diagrammen.arrow_forward**Problem 8-45.** The man has a mass of 60 kg and the crate has a mass of 100 kg. If the coefficient of static friction between his shoes and the ground is \( \mu_s = 0.4 \) and between the crate and the ground is \( \mu_c = 0.3 \), determine if the man is able to move the crate using the rope-and-pulley system shown. **Diagram Explanation:** The diagram illustrates a scenario where a man is attempting to pull a crate using a rope-and-pulley system. The setup is as follows: - **Crate (C):** Positioned on the ground with a rope attached. - **Rope:** Connects the crate to a pulley system and extends to the man. - **Pulley on Tree:** The rope runs over a pulley mounted on a tree which redirects the rope. - **Angles:** - The rope between the crate and tree forms a \(30^\circ\) angle with the horizontal. - The rope between the tree and the man makes a \(45^\circ\) angle with the horizontal. - **Man (A):** Pulling on the rope with the intention of moving the crate. This arrangement tests the…arrow_forwardplease solve this problems follow what the question are asking to do please show me step by steparrow_forward
- please help me to solve this problem and determine the stress for each point i like to be explained step by step with the correct answerarrow_forwardplease solve this problem for me the best way that you can explained to solve please show me the step how to solvearrow_forwardplese solbe this problem and give the correct answer solve step by step find the forces and line actionarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





