A gaseous material XY( g ) dissociates to some extent to produce X( g ) and Y( g ): XY ( g ) ⇌ X ( g ) + Y ( g ) A 2.00-g sample of XY (molar mass = 165 g/mol) is placed in a container with a movable piston at 25°C. The pressure is held constant at 0.967 atm. As XY begins to dissociate, the piston moves until 35.0 mole percent of the original XY has dissociated and then remains at a constant position. Assuming ideal behavior, calculate the density of the gas in the container after the piston has stopped moving, and determine the value of K for this reaction of 25°C.
A gaseous material XY( g ) dissociates to some extent to produce X( g ) and Y( g ): XY ( g ) ⇌ X ( g ) + Y ( g ) A 2.00-g sample of XY (molar mass = 165 g/mol) is placed in a container with a movable piston at 25°C. The pressure is held constant at 0.967 atm. As XY begins to dissociate, the piston moves until 35.0 mole percent of the original XY has dissociated and then remains at a constant position. Assuming ideal behavior, calculate the density of the gas in the container after the piston has stopped moving, and determine the value of K for this reaction of 25°C.
Solution Summary: The author explains how the equilibrium constant K describes the ratio of the reactant to the product on equilibrium conditions in terms of molar concentration.
A gaseous material XY(g) dissociates to some extent to produce X(g) and Y(g):
XY
(
g
)
⇌
X
(
g
)
+
Y
(
g
)
A 2.00-g sample of XY (molar mass = 165 g/mol) is placed in a container with a movable piston at 25°C. The pressure is held constant at 0.967 atm. As XY begins to dissociate, the piston moves until 35.0 mole percent of the original XY has dissociated and then remains at a constant position. Assuming ideal behavior, calculate the density of the gas in the container after the piston has stopped moving, and determine the value of K for this reaction of 25°C.
For a titration of 40.00 mL of 0.0500 M oxalic acid H2C2O4 with 0.1000 M KOH, calculate the pH at each of the following volume of KOH used in the titration: 1) before the titration begin;2) 15 mL; 3) 20 mL; 4) 25 mL; 5) 40 mL; 6) 50 mL. Ka1 = 5.90×10^-2, Ka2 = 6.50×10^-5 for oxalic acid.
Predict the major organic product(s), if any, of the following reactions. Assume all reagents are in excess unless otherwise indicated.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell