Concept explainers
MCAT-Style Passage Problems
Thermal Properties of the Oceans
Seasonal temperature changes in the ocean only affect the top layer of water, to a depth of 500 0m or so. This “mixed” layer is thermally isolated from the cold, deep water below. The average temperature of this top layer of the world’s oceans, which has area 3.6 × 108 km2, is approximately 17°C.
In addition to seasonal temperature changes, the oceans have experienced an overall warming trend over the last century that is expected to continue as the earth’s climate changes. A warmer ocean means a larger volume of water; the oceans will rise. Suppose the average temperature of the top layer of the world's oceans were to increase from a temperature Ti; to a temperature Tf. The area of the oceans will not change, as this is fixed by the size of the ocean basin, so any thermal expansion of the water will cause the water level to rise, as shown in Figure P12.109. The original volume is the product of the original depth and the surface area, Vi = Adi. The change in volume is given by ΔV = AΔd.
Figure P12.109
If the top 500 m of ocean water increased in temperature from 17°C to 18°C, what would be the resulting rise in ocean height?
A. 0.11 m
B. 0.22 m
C. 0.44 m
D. 0.88 m
Want to see the full answer?
Check out a sample textbook solutionChapter 12 Solutions
College Physics: A Strategic Approach (3rd Edition)
Additional Science Textbook Solutions
College Physics: A Strategic Approach (3rd Edition)
Human Anatomy & Physiology (2nd Edition)
Campbell Biology: Concepts & Connections (9th Edition)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Organic Chemistry (8th Edition)
Campbell Essential Biology (7th Edition)
- . On a winter day, the air temperature is — 15°C, and the humidity is 0,001 kg/m3. (a) What is the relative humidity? (b) When this air is brought inside a building, it is heated to 20°C. If the humidity isn't changed, what is the relative humidity inside the building?arrow_forward(a) Calculate the rate of heat conduction through a double-paned window that has a 1.50m3 area and is made of two panes of 0.800-cm-thick glass separated by a 1.00-cm air gap. The inside surface temperature is 15.0C, while that on the outside is 10.0C. (Hint: There are identical temperature drops across the two glass panes. First find these and then the temperature drop across the air gap. This problem ignores the increased heat transfer in the air gap due to convection.) (b) Calculate the rate of heat conduction through a 1.60-cm-thick window of the same area and with the same temperatures. Compare your answer with that for part (a).arrow_forwardA glass coffee pot has a circular bottom with a 9.00-cm diameter in contact with a heating element that keeps the coffee warm with a continuous heat transfer rate of 50.0 W (a) What is the temperature of the bottom of the pot, if it is 3.00 mm thick and the inside temperature is 60.0C ? (b) If the temperature of the coffee remains constant and all of the heat transfer is removed by evaporation, how many grams per minute evaporate? Take the heat of vaporization to be 2340kJ/kg.arrow_forward
- In the chapter on fluid mechanics, Bernoulli's equation for the flow of incompressible fluids was explained in terms of changes affecting a small volume dV of fluid. Such volumes are a fundamental idea in the study of the flow of compressible fluids such as gases as well. For the equations of hydrodynamics to apply, the mean free path must be much less than the linear size of such a volume, adV1/3 . For air in the stratosphere at a temperature of 220 K and a pressure of 5.8 kPa, how big should a be for it to be 100 times the mean free path? Take the effective radius of air molecules to be 1.881011 m, which is roughly correct for N2.arrow_forwardem>. The volume of an ideal gas enclosed in a thin, elastic membrane in a room at sea level where the air temperature is 18°C is 8 10-3 m3 .If the temperature of the room is increased by 10°C, what is the new volume of the gas?arrow_forward(a) Suppose a cold front blows into your locale and drops the temperature by 40.0 Fahrenheit degrees. How many degrees Celsius does me temperature decrease when there is a 40.0F decrease in temperature? (b) Show that any change in temperature in Fahrenheit degrees is nine—?fths the change in Celsius degrees.arrow_forward
- The Surface temperature of the Sun is about 5750 K. What is this temperature on the Fahrenheit scale?arrow_forward(a) How many kilograms of water must evaporate from a 60.0-kg woman to lower her body temperature by 0.750C ? (b) Is this a reasonable amount of water to evaporate in the form of perspiration, assuming the relative humidity of the surrounding air is low?arrow_forwardOne easy way to reduce heating (and cooling) costs is to add extra insulation in the attic of a house. Suppose the house already had 15 cm of fiberglass insulation in the attic and in all the exterior surfaces. If you added an extra 8.0 cm of fiberglass to the attic, then by what percentage would the heating cost of the house drop? Take the single story house to be of dimensions 10 m by 15 m by 3.0 m. Ignore air infiltration and heat loss through windows and doors.arrow_forward
- A glass windowpane in a home is 0.620 cm thick and has dimensions of 1.00 in 2.00 in. On a certain day, the temperature of the interior surface of the glass is 25.0C and the exterior surface temperature is 0C. (a) What is the rate at which energy is transferred by heat through the glass? (b) How much energy is transferred through the window in one day, assuming the temperatures on the surfaces remain constant?arrow_forwardA thermopane window consists of two glass panes, each 0.50 cm thick, with a 1.0-cm-thick sealed layer of air in between. (a) If the inside surface temperature is 23C and the outside surface temperature is 0.0C, determine the rate of energy transfer through 1.0 m2 of the window. (b) Compare your answer to (a) with the rate of energy transfer through 1.0 m2 of a single 1.0-cm-thick pane of glass. Disregard surface air layers.arrow_forward(a) What is the rate of heat conduction through the 3.00-cm-thick fur of a large animal having a 1.40m2 surface area? Assume that the animal’s skin temperature is 32.0C, that tile air temperature is 5.00C, and that fur has the same thermal conductivity as air. (b) What food intake will the animal need in one day to replace this heat transfer?arrow_forward
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning