Mechanics of Materials (10th Edition)
10th Edition
ISBN: 9780134319650
Author: Russell C. Hibbeler
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 11.4, Problem 11.40P
To determine
The minimum diameter (d) of the solid shaft.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The gear forces shown act in planes parallel to the yz plane. The force on
20 in
gear A is 300 lbf. Consider the bearings at O and B to be simple supports.
For a static analysis and a factor of safety of 3.5, use both the DET and
16 in
the MSST to determine the minimum safe diameter of the shaft.
10 in
Consider the material to have a yield strength of 60 ksi.
Gear A
Solution:
24-in D.
Gear C
10-in D.
20°
The following shaft, having a diameter of 20 mm, is made of steel (Sut = 520 MPa, Se = 260 MPa) and is subjected to a fully reversed transverse force F = 120 N and a fully reversed torque T = 60 N.m. The shaft is fixed at its left end. Find the factor of safety at A for infinite lifetime using the modified Goodman diagram.
The crank is loaded by a single force
F, = 200 lb which causes twisting
and bending of the 1-in diameter
shaft AB fixed to the support. The
2 in
shaft is made of hot-rolled AISI
1035 steel. Identify the point with
the maximum von Mises stress at
end A and find the factor of safety
using the distortion-energy theory of
1-in dia.
t in
in
B
failure.
5 in
6 in
SOLUTION:
Chapter 11 Solutions
Mechanics of Materials (10th Edition)
Ch. 11.2 - Determine the minimum dimension a to the nearest...Ch. 11.2 - of the rod to safely support the load. The rod is...Ch. 11.2 - The wood has an allowable normal stress of allow =...Ch. 11.2 - of the beam's cross section to safely support the...Ch. 11.2 - Determine the minimum dimension b to the nearest...Ch. 11.2 - The beam is made of steel having an allowable...Ch. 11.2 - Determine its dimensions if it is to be...Ch. 11.2 - Determine the minimum width of the beam to the...Ch. 11.2 - if P=10 kip.Ch. 11.2 - If the allowable bending stress is allow = 22 ksi...
Ch. 11.2 - The allowable bending stress is allow = 24 ksi and...Ch. 11.2 - The allowable bending stress is allow = 22 ksi and...Ch. 11.2 - The allowable bending stress is allow = 24 ksi and...Ch. 11.2 - Select the lightest-weight wide-flange beam from...Ch. 11.2 - The beam has an allowable normal stress of allow =...Ch. 11.2 - The beam has an allowable normal stress of allow...Ch. 11.2 - If each nail can support a shear force of 200 lb....Ch. 11.2 - If each beam is to be designed to carry 90 lb/ft...Ch. 11.2 - Determine its height h so that it simultaneously...Ch. 11.2 - The beam is constructed from four boards. If each...Ch. 11.2 - Prob. 11.15PCh. 11.2 - The beam has an allowable normal stress of allow....Ch. 11.2 - Determine the maximum cable force P that can...Ch. 11.2 - to safely support the load. The wood has an...Ch. 11.2 - and the wood has an allowable normal stress of...Ch. 11.2 - If the glue can support a shear stress of allow, =...Ch. 11.2 - If the allowable bending stress is allow = 6 MPa,...Ch. 11.2 - Determine the width b if the height h=2b.Ch. 11.2 - The allowable bending stress is allow = 24 ksi and...Ch. 11.2 - if allow = 30 ksi and allow = 15 ksi. The journal...Ch. 11.2 - if allow = 30 ksi and allow = 15 ksi. The journal...Ch. 11.2 - Select the lightest-weight wide-flange beam from...Ch. 11.2 - The allowable bending stress is allow = 30 ksi and...Ch. 11.2 - The allowable bending stress is allow = 30 ksi and...Ch. 11.2 - If the maximum bending stress is not to exceed...Ch. 11.2 - Determine the maximum load that can safely be...Ch. 11.4 - Determine the variation in the width was a...Ch. 11.4 - The tapered beam supports a uniform distributed...Ch. 11.4 - The tapered beam supports the concentrated force P...Ch. 11.4 - The beam is made from a plate that has a constant...Ch. 11.4 - Determine the variation in the depth d of a...Ch. 11.4 - Determine the variation of the radius r of the...Ch. 11.4 - Prob. 11.37PCh. 11.4 - Determine the variation in the width b as a...Ch. 11.4 - The tubular shaft has an inner diameter of 15 mm....Ch. 11.4 - Prob. 11.40PCh. 11.4 - Prob. 11.41PCh. 11.4 - The pulleys fixed to the shaft are loaded as...Ch. 11.4 - Prob. 11.43PCh. 11.4 - Prob. 11.44PCh. 11.4 - Prob. 11.45PCh. 11 - The cantilevered beam has a circular cross...Ch. 11 - Select the lightest-weight wide-flange overhanging...Ch. 11 - Prob. 11.3RPCh. 11 - Determine the shaft's diameter to the nearest...Ch. 11 - Select the lightest-weight wide-flange beam from...Ch. 11 - The simply supported joist is used in the...Ch. 11 - The simply supported joist is used in the...Ch. 11 - by 4-in. pieces of wood braced as shown. If the...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 1.45 is incorrect.arrow_forwardDetermine to the nearest millimeter the minimum diameter of the solid shaft if it is subjected to the gear loading. The bearings at A and B exert force components only in the y and z directions on the shaft. Base the design on the maximum distortion energy theory of failure with sallow = 150 MPa.arrow_forwardHaving trouble with finding torsional Shear stress for xy and zy. Thank youarrow_forward
- For each part of the shaft, determine the torsion T and calculate the corresponding maximum torsional stress. The bearings are frictionless. B is the drive pulley. Shaft diameter is 2 inch.arrow_forwardThe journal bearings at A and B exert only x and z components of force on the shaft. Determine the shaft’s diameter to the nearest millimeter so that it can resist the loadings. Use the maximum distortion energy theory of failure with sallow = 200 MPa.arrow_forwardBar of steel, (yield strenght Sy = 462 MPa) is subjected to the following stresses; σx = 171 MPa , σy = -144 MPa , τxy = 175 MPa Using the Distortion-Energy Theory determine the factor of safety and check is the bar will fail or not.arrow_forward
- A spring has a load of 50 lb with a spring index of 8. If the induced stress is 90ksi, determine the wire diameter.arrow_forwardA load P is supported by two springs arranged in series. The upper spring has 20 turns of 19 mm diameter wire on a mean diameter of 150 mm. The lower spring consists of 15 turns of 12 mm diameter wire on a mead diameter of 125 mm. Determine the spring index of the lower spring in MPa if the total deformation is 76 mm and G of 83 GPa.arrow_forwardPLEASE SOLVE ASAP and p is unknownarrow_forward
- The specifications for a coil spring are known. Infinite fatigue life is required, using a safety factor of 1.3 applied to the maximum load only. The fatigue strength can be represented by a line between τmax= 600, τmin= 0 and τmax= τmin= 900 MPa.Assume both end plates are in contact with nearly a full turn of wireand that the end plate loads coincide with the spring axis.Determine a suitable combination of d, D, and N, if C = 8arrow_forwardThe shaft AB made of steel has an outside diameter of 165 mm and a wall thickness of 9.5 mm. The shaft is subjected to an axial compression load of P = 156 kN and a torque T = 12 kN.m, which act in the directions shown in the Figure. The yield strength of the steel is Y = 248 MPa and a minimum factor of safety = 2.0 is required by specification. Consider the point K and determine whether the shaft satisfies the specifications according to the maximum-distortion-energy theory.arrow_forwardDetermine the power in kilowatts transmitted by the solid shaft if the radius is 7.5mm and it rotates with revolution of 67.6 RPS. Maximum torsional stress equivalent to 50000 kPa.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Mechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage Learning
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning