Mathematics All Around (6th Edition)
6th Edition
ISBN: 9780134434681
Author: Tom Pirnot
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 11.2, Problem 19E
Presidential election. One of the several controversies of the 2000 presidential election was that Al Gore had more popular ‘dotes than George W. Bush, yet lost the election. A summary of the popular vote is given in the table below.
Candidate | Popular vote |
George W. Bush | 50,356,002 |
Al Gore | 50,399,897 |
Ralph Nader | 2,882,955 |
Pat Buchanan | 448,895 |
Harry Browne | 384,431 |
Howard Phillips | 98,020 |
John Hagelin | 83,714 |
Other | 51,186 |
Total | 105,405,100 |
Assume that the election was held using plurality with elimination method. further assume:
- All of Hagelin’s, Phillips’ and Buchanan’s voters preferred Bush as their second choice.
- All Browne’s voters preferred Nader second and Gore third.
- The other’ voter had bush and Gore split equally as their second choices.
- 70 percent of those whose first choice was Nader preferred Gore second and 30 percent preferred Bush second.
- What are the vote totals after all are eliminated except Bush, Gore and Nader?
- What are the final vote totals?
- Who wins and with what percent of the popular vote?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
310015
K
Question 9,
5.2.28-T
Part 1 of 4
HW Score:
85.96%, 49 of
57 points
Points: 1
Save
of 6
Based on a poll, among adults who regret getting tattoos, 28%
say that they were too young when they got their tattoos.
Assume that six adults who regret getting tattoos are
randomly selected, and find the indicated probability. Complete
parts (a) through (d) below.
a. Find the probability that none of the selected adults say that
they were too young to get tattoos.
0.0520 (Round to four decimal places as needed.)
Clear all
Final check
Feb 7 12:47 US O
Solutions of inequalitie
Google Classroom
Mic
Is (-3, 2) a solution of 7x+9y > -3?
Choose 1 answer:
A
Yes
B
No
Related content
▶6:06
Testing solutions to inequalities
2 of 4
can you help me solve the parts and show workings please
Chapter 11 Solutions
Mathematics All Around (6th Edition)
Ch. 11.1 - Four candidates running for a vacant seat on the...Ch. 11.1 - Five candidates running for mayor receive votes as...Ch. 11.1 - The university administration has asked a group of...Ch. 11.1 - The university administration has asked a group of...Ch. 11.1 - The university administration has asked a group of...Ch. 11.1 - The university administration has asked a group of...Ch. 11.1 - The drama society members are voting for the type...Ch. 11.1 - The drama society members are voting for the type...Ch. 11.1 - The drama society members are voting for the type...Ch. 11.1 - The drama society members are voting for the type...
Ch. 11.1 - Before a conference on Trends in the next Decade,...Ch. 11.1 - Before a conference on Trends in the next Decade,...Ch. 11.1 - Prob. 13ECh. 11.1 - Prob. 14ECh. 11.1 - A small employee-owned Internet company is voting...Ch. 11.1 - Prob. 16ECh. 11.1 - Prob. 17ECh. 11.1 - A small employee-owned Internet company is voting...Ch. 11.1 - Prob. 19ECh. 11.1 - Prob. 20ECh. 11.1 - Prob. 21ECh. 11.1 - Prob. 22ECh. 11.1 - In Exercises 23-26, refer to the preference table...Ch. 11.1 - Prob. 24ECh. 11.1 - In Exercises 23-26, refer to the preference table...Ch. 11.1 - Prob. 26ECh. 11.1 - In Exercises 27-30, refer to the preference table...Ch. 11.1 - In Exercises 27-30, refer to the preference table...Ch. 11.1 - In Exercises 27-30, refer to the preference table...Ch. 11.1 - Prob. 30ECh. 11.1 - Prob. 31ECh. 11.1 - Prob. 32ECh. 11.1 - Prob. 33ECh. 11.1 - Prob. 34ECh. 11.1 - Prob. 35ECh. 11.1 - Prob. 36ECh. 11.1 - Prob. 37ECh. 11.1 - Prob. 38ECh. 11.1 - Prob. 39ECh. 11.1 - Prob. 40ECh. 11.1 - Prob. 41ECh. 11.1 - Prob. 42ECh. 11.1 - Prob. 43ECh. 11.1 - Math in Your Life: Between the Numbers Instant...Ch. 11.1 - In approval voting, a person can vote for more...Ch. 11.1 - Prob. 46ECh. 11.1 - Prob. 47ECh. 11.1 - Prob. 48ECh. 11.1 - Prob. 49ECh. 11.1 - Prob. 50ECh. 11.1 - Prob. 51ECh. 11.1 - Prob. 52ECh. 11.2 - Some of these exercises have no fixed solution...Ch. 11.2 - Some of these exercises have no fixed solution...Ch. 11.2 - Determining the legal drinking age. A state...Ch. 11.2 - Voting for the president of a club. A chapter of...Ch. 11.2 - Choosing a location for a research facility. Teach...Ch. 11.2 - Locating a new factory. The Land Mover Tractor...Ch. 11.2 - Reducing a budget. Due to a decrease in state...Ch. 11.2 - Voting on an award for best restaurant. A group of...Ch. 11.2 - Use the following preference table for Exercises 9...Ch. 11.2 - Use the following preference table for Exercises 9...Ch. 11.2 - Complete the preference table so that the Borda...Ch. 11.2 - Complete the preference table so that A is the...Ch. 11.2 - Prob. 13ECh. 11.2 - Make a preference table similar to the one given...Ch. 11.2 - Complete the preference table so that the...Ch. 11.2 - Does the plurality method satisfy the majority...Ch. 11.2 - Does the plurality-with-elimination method satisfy...Ch. 11.2 - Prob. 18ECh. 11.2 - Presidential election. One of the several...Ch. 11.2 - Prob. 20ECh. 11.2 - Prob. 21ECh. 11.2 - A run off election. Repeat Exercise 21 using this...Ch. 11.2 - Prob. 23ECh. 11.2 - Prob. 24ECh. 11.2 - Prob. 25ECh. 11.2 - Prob. 26ECh. 11.2 - Prob. 27ECh. 11.2 - Voters are choosing among five options. Make a...Ch. 11.2 - Make a preference table, similar to the one given...Ch. 11.2 - Prob. 30ECh. 11.2 - Prob. 31ECh. 11.2 - Prob. 32ECh. 11.2 - Prob. 33ECh. 11.2 - Prob. 34ECh. 11.2 - One of the voting methods we have been discussing...Ch. 11.3 - Prob. 1ECh. 11.3 - Prob. 2ECh. 11.3 - In Exercises 1-12, the weight represent voters A,...Ch. 11.3 - Prob. 4ECh. 11.3 - Prob. 5ECh. 11.3 - Prob. 6ECh. 11.3 - In Exercises 1-12, the weight represent voters A,...Ch. 11.3 - In Exercises 1-12, the weight represent voters A,...Ch. 11.3 - In Exercises 1-12, the weight represent voters A,...Ch. 11.3 - Prob. 10ECh. 11.3 - Prob. 11ECh. 11.3 - Prob. 12ECh. 11.3 - In Exercises 13-16, write out all winning...Ch. 11.3 - Prob. 14ECh. 11.3 - In Exercises 13-16, write out all winning...Ch. 11.3 - Prob. 16ECh. 11.3 - Prob. 17ECh. 11.3 - Prob. 18ECh. 11.3 - Prob. 19ECh. 11.3 - Prob. 20ECh. 11.3 - Prob. 21ECh. 11.3 - Prob. 22ECh. 11.3 - Prob. 23ECh. 11.3 - Prob. 24ECh. 11.3 - Prob. 25ECh. 11.3 - Prob. 26ECh. 11.3 - Prob. 27ECh. 11.3 - Prob. 28ECh. 11.3 - Prob. 29ECh. 11.3 - Prob. 30ECh. 11.3 - Prob. 31ECh. 11.3 - Prob. 32ECh. 11.3 - In Exercises 29-34, determine the Banzhaf power...Ch. 11.3 - Prob. 34ECh. 11.3 - The system [3:1,1,1,1,1] is an example of a one...Ch. 11.3 - Prob. 36ECh. 11.3 - Consider the system [14:15,2,3,3,5] in which A is...Ch. 11.3 - Prob. 38ECh. 11.3 - Calculating power in the electoral college. After...Ch. 11.3 - Prob. 40ECh. 11.3 - Prob. 41ECh. 11.3 - Prob. 42ECh. 11.3 - Prob. 43ECh. 11.3 - In Example 5, we analyzed the voting power of the...Ch. 11.3 - In Example 5, we analyzed the voting power of the...Ch. 11.3 - Prob. 46ECh. 11.3 - Prob. 47ECh. 11.3 - Prob. 48ECh. 11.3 - Prob. 49ECh. 11.3 - Prob. 50ECh. 11.3 - A dummy in a weighted voting system is a voter...Ch. 11.3 - Prob. 52ECh. 11.3 - Prob. 53ECh. 11.3 - Prob. 54ECh. 11.3 - In Exercises 55 and 56, devise a voting system...Ch. 11.3 - Prob. 56ECh. 11.4 - In Exercises 1 4, use tree diagrams to find all...Ch. 11.4 - Prob. 2ECh. 11.4 - In Exercises 1 4, use tree diagrams to find all...Ch. 11.4 - Prob. 4ECh. 11.4 - Prob. 5ECh. 11.4 - Prob. 6ECh. 11.4 - Prob. 7ECh. 11.4 - Prob. 8ECh. 11.4 - Prob. 9ECh. 11.4 - Prob. 10ECh. 11.4 - Prob. 11ECh. 11.4 - Prob. 12ECh. 11.4 - In Exercises 1116, determine the Shapley-Shubik...Ch. 11.4 - Prob. 14ECh. 11.4 - Prob. 15ECh. 11.4 - Prob. 16ECh. 11.4 - The system [3:1,1,1,1,1] is an example of a one...Ch. 11.4 - Measuring power on a jury. We can consider a...Ch. 11.4 - Prob. 19ECh. 11.4 - Prob. 20ECh. 11.4 - Prob. 21ECh. 11.4 - Measuring power on a theater guild. The Theater...Ch. 11.4 - Measuring power on a state committee. The college...Ch. 11.4 - Prob. 24ECh. 11.4 - Prob. 25ECh. 11.4 - A new social media company, Chirp, has an...Ch. 11.4 - Prob. 27ECh. 11.4 - Measuring power among states. Repeat Exercise 27...Ch. 11.4 - Explain the difference between the Banzhaf index...Ch. 11.4 - Prob. 30ECh. 11.4 - Prob. 31ECh. 11.4 - Prob. 32ECh. 11.4 - Prob. 33ECh. 11.4 - Prob. 34ECh. 11.CR - Prob. 1CRCh. 11.CR - Prob. 2CRCh. 11.CR - Prob. 3CRCh. 11.CR - Prob. 4CRCh. 11.CR - Prob. 5CRCh. 11.CR - Prob. 6CRCh. 11.CR - Prob. 7CRCh. 11.CR - Prob. 8CRCh. 11.CR - Prob. 9CRCh. 11.CR - Prob. 10CRCh. 11.CR - Prob. 11CRCh. 11.CR - Prob. 12CRCh. 11.CR - Prob. 13CRCh. 11.CR - Prob. 14CRCh. 11.CR - Prob. 15CRCh. 11.CR - Prob. 16CRCh. 11.CR - Prob. 17CRCh. 11.CR - Prob. 18CRCh. 11.CT - Prob. 1CTCh. 11.CT - Prob. 2CTCh. 11.CT - Prob. 3CTCh. 11.CT - Prob. 4CTCh. 11.CT - Prob. 5CTCh. 11.CT - Prob. 6CTCh. 11.CT - Prob. 7CTCh. 11.CT - Prob. 8CTCh. 11.CT - Prob. 9CTCh. 11.CT - Determine the Banzhaf power index for each voter...Ch. 11.CT - Prob. 11CTCh. 11.CT - Prob. 12CTCh. 11.CT - Prob. 13CTCh. 11.CT - Prob. 14CTCh. 11.CT - Prob. 15CTCh. 11.CT - Prob. 16CT
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- Suppose that a room containing 1300 cubic feet of air is originally free of carbon monoxide (CO). Beginning at time t = 0, cigarette smoke containing 4% CO is introduced into the room at a rate of 0.8 cubic feet per minute. The well-circulated smoke and air mixture is allowed to leave the room at the same rate. Let A(t) represent the amount of CO in the room (in cubic feet) after t minutes. (A) Write the DE model for the time rate of change of CO in the room. Also state the initial condition. dA dt A(0) (B) Solve the IVP to find the amount of CO in the room at any time t > 0. A(t) (C) Extended exposure to a CO concentration as low as 0.00012 is harmful to the human body. Find the time at which this concentration is reached. t= minutesarrow_forward2 18-17-16-15-14-13-12-11-10 -9 -8 -6 -5 -4-3-2-1 $ 6 8 9 10 -2+ The curve above is the graph of a sinusoidal function. It goes through the points (-10, -1) and (4, -1). Find a sinusoidal function that matches the given graph. If needed, you can enter π-3.1416... as 'pi' in your answer, otherwise use at least 3 decimal digits. f(x) = > Next Questionarrow_forward4. Use method of separation of variable to solve the following wave equation მłu J²u subject to u(0,t) =0, for t> 0, u(л,t) = 0, for t> 0, = t> 0, at² ax²' u(x, 0) = 0, 0.01 x, ut(x, 0) = Π 0.01 (π-x), 0arrow_forwardYou buy a house for $210000, and take out a 30-year mortgage at 7% interest. For simplicity, assume that interest compounds continuously. A) What will be your annual mortgage payment? $ per year B) Suppose that regular raises at your job allow you to increase your annual payment by 6% each year. For simplicity, assume this is a nominal rate, and your payment amount increases continuously. How long will it take to pay off the mortgage? yearsarrow_forwardPlease help me answer this question!. Please handwrite it. I don't require AI answers. Thanks for your time!.arrow_forwardSolve the following heat equation by method of separation variables: ди = at subject to u(0,t) =0, for -16024 ძx2 • t>0, 0 0, ux (4,t) = 0, for t> 0, u(x, 0) = (x-3, \-1, 0 < x ≤2 2≤ x ≤ 4.arrow_forwardYour employer automatically puts 5 percent of your salary into a 401(k) retirement account each year. The account earns 8% interest. Suppose you just got the job, your starting salary is $40000, and you expect to receive a 2% raise each year. For simplicity, assume that interest earned and your raises are given as nominal rates and compound continuously. Find the value of your retirement account after 30 years Value = $arrow_forwardex 5. important aspects. Graph f(x)=lnx. Be sure to make your graph big enough to easily read (use the space given.) Label all 6 33arrow_forwardSuppose that a room containing 1300 cubic feet of air is originally free of carbon monoxide (CO). Beginning at time t = 0, cigarette smoke containing 4% CO is introduced into the room at a rate of 0.8 cubic feet per minute. The well-circulated smoke and air mixture is allowed to leave the room at the same rate. Let A(t) represent the amount of CO in the room (in cubic feet) after t minutes. (A) Write the DE model for the time rate of change of CO in the room. Also state the initial condition. dA dt A(0) (B) Solve the IVP to find the amount of CO in the room at any time t > 0. A(t) (C) Extended exposure to a CO concentration as low as 0.00012 is harmful to the human body. Find the time at which this concentration is reached. t= minutesarrow_forwardNewton's Law of Cooling tells us that the rate of change of the temperature of an object is proportional to the temperature difference between the object and its surroundings. This can be modeled by the differential equation dT dt k(TA), where T is the temperature of the object after t units of time have passed, A is the ambient temperature of the object's surroundings, and k is a constant of proportionality. Suppose that a cup of coffee begins at 178 degrees and, after sitting in room temperature of 61 degrees for 12 minutes, the coffee reaches 171 degrees. How long will it take before the coffee reaches 155 degrees? Include at least 2 decimal places in your answer. minutesarrow_forwardDecide whether each limit exists. If a limit exists, estimate its value. 11. (a) lim f(x) x-3 f(x) ↑ 4 3- 2+ (b) lim f(x) x―0 -2 0 X 1234arrow_forwardcan you help me solve this question and show workings pleasearrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Holt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGAL
Holt Mcdougal Larson Pre-algebra: Student Edition...
Algebra
ISBN:9780547587776
Author:HOLT MCDOUGAL
Publisher:HOLT MCDOUGAL
Statistics 4.1 Point Estimators; Author: Dr. Jack L. Jackson II;https://www.youtube.com/watch?v=2MrI0J8XCEE;License: Standard YouTube License, CC-BY
Statistics 101: Point Estimators; Author: Brandon Foltz;https://www.youtube.com/watch?v=4v41z3HwLaM;License: Standard YouTube License, CC-BY
Central limit theorem; Author: 365 Data Science;https://www.youtube.com/watch?v=b5xQmk9veZ4;License: Standard YouTube License, CC-BY
Point Estimate Definition & Example; Author: Prof. Essa;https://www.youtube.com/watch?v=OTVwtvQmSn0;License: Standard Youtube License
Point Estimation; Author: Vamsidhar Ambatipudi;https://www.youtube.com/watch?v=flqhlM2bZWc;License: Standard Youtube License