THERMODYNAMICS: ENG APPROACH LOOSELEAF
9th Edition
ISBN: 9781266084584
Author: CENGEL
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 11.10, Problem 30P
A vapor-compression refrigeration system absorbs heat from a space at 0°C at a rate of 24,000 Btu/h and rejects heat to water in the condenser. The water experiences a temperature rise of 12°C in the condenser. The COP of the system is estimated to be 2.05. Determine (a) the power input to the system, in kW, (b) the mass flow rate of water through the condenser, and (c) the second-law efficiency and the exergy destruction for the refrigerator. Take T0 = 20°C and cp,water = 4.18 kJ/kg·°C.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A vapor compression refrigeration system is designed to have a capacity of 100 tons of refrigeration. It produces chilled water from 23C to 2C. Its actual coefficient of performance is 5.96 and 35% of the power supplied to the compressor is lost in the form of friction and cylinder cooling losses. Determine the condenser cooling water required in kg/s for temperature rise of 10C.
A refrigeration system uses a water-cooled condenser for rejecting the waste heat. The system absorbs heat from a space at 25°F at a rate of 21,000 Btu/h. Water enters the condenser at 65°F at a rate of 1.45 lbm/s. The COP of the system is estimated to be 1.9. Determine the power input to the system in kW.
A refrigeration system absorbs heat from a space at 5 ◦C at a rate of 25 kW and rejects heatto water in the condenser. Water enters the condenser at 15 ◦C at a rate of 0.84 kg/s. TheCOP of the system is estimated to be 1.75. Determine (a) the power input to the system,(b) the temperature of the water at the exit of the condenser, and (c) the maximum possibleCOP of the system. The specific heat of water is 4.18 kJ/kg·◦C.
Chapter 11 Solutions
THERMODYNAMICS: ENG APPROACH LOOSELEAF
Ch. 11.10 - Why do we study the reversed Carnot cycle even...Ch. 11.10 - Why is the reversed Carnot cycle executed within...Ch. 11.10 - A steady-flow Carnot refrigeration cycle uses...Ch. 11.10 - Refrigerant-134a enters the condenser of a...Ch. 11.10 - Does the ideal vapor-compression refrigeration...Ch. 11.10 - Why is the throttling valve not replaced by an...Ch. 11.10 - In a refrigeration system, would you recommend...Ch. 11.10 - Does the area enclosed by the cycle on a T-s...Ch. 11.10 - Consider two vapor-compression refrigeration...Ch. 11.10 - It is proposed to use water instead of...
Ch. 11.10 - The COP of vapor-compression refrigeration cycles...Ch. 11.10 - A 10-kW cooling load is to be served by operating...Ch. 11.10 - An ice-making machine operates on the ideal...Ch. 11.10 - An air conditioner using refrigerant-134a as the...Ch. 11.10 - An ideal vapor-compression refrigeration cycle...Ch. 11.10 - A refrigerator operates on the ideal...Ch. 11.10 - A refrigerator uses refrigerant-134a as the...Ch. 11.10 - An ideal vapor-compression refrigeration cycle...Ch. 11.10 - A refrigerator uses refrigerant-134a as its...Ch. 11.10 - A refrigerator uses refrigerant-134a as the...Ch. 11.10 - A commercial refrigerator with refrigerant-134a as...Ch. 11.10 - The manufacturer of an air conditioner claims a...Ch. 11.10 - Prob. 24PCh. 11.10 - How is the second-law efficiency of a refrigerator...Ch. 11.10 - Prob. 26PCh. 11.10 - Prob. 27PCh. 11.10 - Prob. 28PCh. 11.10 - Bananas are to be cooled from 28C to 12C at a rate...Ch. 11.10 - A vapor-compression refrigeration system absorbs...Ch. 11.10 - A room is kept at 5C by a vapor-compression...Ch. 11.10 - Prob. 32PCh. 11.10 - A refrigerator operating on the vapor-compression...Ch. 11.10 - When selecting a refrigerant for a certain...Ch. 11.10 - A refrigerant-134a refrigerator is to maintain the...Ch. 11.10 - Consider a refrigeration system using...Ch. 11.10 - A refrigerator that operates on the ideal...Ch. 11.10 - A heat pump that operates on the ideal...Ch. 11.10 - Do you think a heat pump system will be more...Ch. 11.10 - What is a water-source heat pump? How does the COP...Ch. 11.10 - A heat pump operates on the ideal...Ch. 11.10 - Refrigerant-134a enters the condenser of a...Ch. 11.10 - A heat pump that operates on the ideal...Ch. 11.10 - The liquid leaving the condenser of a 100,000...Ch. 11.10 - Reconsider Prob. 1144E. What is the effect on the...Ch. 11.10 - A heat pump using refrigerant-134a heats a house...Ch. 11.10 - A heat pump using refrigerant-134a as a...Ch. 11.10 - Reconsider Prob. 1148. What is the effect on the...Ch. 11.10 - Prob. 50PCh. 11.10 - How does the COP of a cascade refrigeration system...Ch. 11.10 - Consider a two-stage cascade refrigeration cycle...Ch. 11.10 - Can a vapor-compression refrigeration system with...Ch. 11.10 - Prob. 54PCh. 11.10 - A certain application requires maintaining the...Ch. 11.10 - Prob. 56PCh. 11.10 - Repeat Prob. 1156 for a flash chamber pressure of...Ch. 11.10 - Prob. 59PCh. 11.10 - A two-stage compression refrigeration system with...Ch. 11.10 - A two-stage compression refrigeration system with...Ch. 11.10 - A two-evaporator compression refrigeration system...Ch. 11.10 - A two-evaporator compression refrigeration system...Ch. 11.10 - Repeat Prob. 1163E if the 30 psia evaporator is to...Ch. 11.10 - Consider a two-stage cascade refrigeration cycle...Ch. 11.10 - How does the ideal gas refrigeration cycle differ...Ch. 11.10 - Prob. 67PCh. 11.10 - Devise a refrigeration cycle that works on the...Ch. 11.10 - How is the ideal gas refrigeration cycle modified...Ch. 11.10 - Prob. 70PCh. 11.10 - How do we achieve very low temperatures with gas...Ch. 11.10 - An ideal gas refrigeration system operates with...Ch. 11.10 - Air enters the compressor of an ideal gas...Ch. 11.10 - Repeat Prob. 1173 for a compressor isentropic...Ch. 11.10 - An ideal gas refrigeration cycle uses air as the...Ch. 11.10 - Rework Prob. 1176E when the compressor isentropic...Ch. 11.10 - A gas refrigeration cycle with a pressure ratio of...Ch. 11.10 - A gas refrigeration system using air as the...Ch. 11.10 - An ideal gas refrigeration system with two stages...Ch. 11.10 - Prob. 81PCh. 11.10 - Prob. 82PCh. 11.10 - What are the advantages and disadvantages of...Ch. 11.10 - Prob. 84PCh. 11.10 - Prob. 85PCh. 11.10 - Prob. 86PCh. 11.10 - Prob. 87PCh. 11.10 - Heat is supplied to an absorption refrigeration...Ch. 11.10 - An absorption refrigeration system that receives...Ch. 11.10 - An absorption refrigeration system receives heat...Ch. 11.10 - Heat is supplied to an absorption refrigeration...Ch. 11.10 - Prob. 92PCh. 11.10 - Prob. 93PCh. 11.10 - Consider a circular copper wire formed by...Ch. 11.10 - An iron wire and a constantan wire are formed into...Ch. 11.10 - Prob. 96PCh. 11.10 - Prob. 97PCh. 11.10 - Prob. 98PCh. 11.10 - Prob. 99PCh. 11.10 - Prob. 100PCh. 11.10 - Prob. 101PCh. 11.10 - Prob. 102PCh. 11.10 - A thermoelectric cooler has a COP of 0.18, and the...Ch. 11.10 - Prob. 104PCh. 11.10 - Prob. 105PCh. 11.10 - Prob. 106PCh. 11.10 - Rooms with floor areas of up to 15 m2 are cooled...Ch. 11.10 - Consider a steady-flow Carnot refrigeration cycle...Ch. 11.10 - Consider an ice-producing plant that operates on...Ch. 11.10 - A heat pump that operates on the ideal...Ch. 11.10 - A heat pump operates on the ideal...Ch. 11.10 - A large refrigeration plant is to be maintained at...Ch. 11.10 - Repeat Prob. 11112 assuming the compressor has an...Ch. 11.10 - An air conditioner with refrigerant-134a as the...Ch. 11.10 - A refrigerator using refrigerant-134a as the...Ch. 11.10 - Prob. 117RPCh. 11.10 - An air conditioner operates on the...Ch. 11.10 - Consider a two-stage compression refrigeration...Ch. 11.10 - A two-evaporator compression refrigeration system...Ch. 11.10 - The refrigeration system of Fig. P11122 is another...Ch. 11.10 - Repeat Prob. 11122 if the heat exchanger provides...Ch. 11.10 - An aircraft on the ground is to be cooled by a gas...Ch. 11.10 - Consider a regenerative gas refrigeration cycle...Ch. 11.10 - An ideal gas refrigeration system with three...Ch. 11.10 - Prob. 130RPCh. 11.10 - Derive a relation for the COP of the two-stage...Ch. 11.10 - Prob. 133FEPCh. 11.10 - Prob. 134FEPCh. 11.10 - Prob. 135FEPCh. 11.10 - Prob. 136FEPCh. 11.10 - Prob. 137FEPCh. 11.10 - An ideal vapor-compression refrigeration cycle...Ch. 11.10 - Prob. 139FEPCh. 11.10 - An ideal gas refrigeration cycle using air as the...Ch. 11.10 - Prob. 141FEPCh. 11.10 - Prob. 142FEP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 1) refrigerated space at -35°C by rejecting waste heat to cooling water that enters the condenser at T, C at a rate of 0.25 kg/s and leaves at 26°C. The refrigerant enters the condenser a leaves at the same pressure subcooled by T, C. If the compressor consumes 3.3 kW of power, determine (a) the mass flow rate of the refrigerant, (b) the refrigeration load, Q. (c) the COP. Is this cycle reversible or irreversible? Explain. A commercial refrigerator with refrigerant-134a as the working fluid is used to keep the 1.2 MPa and 50°C and Notes: If the last digit of your student number is less than 5,1 T, is equal to the last digit of your student number. T. 16°C. It is 20°C otherwise. in any ofogse questions, yoearrow_forwardRefrigerant-134a enters the condenser of a residential heat pump at 1400 kPa and 65°C at a rate of 0.062 kgis and leaves at 1400 kPa as saturated liquid. If the compressor consumes 1.6 KW of power, determine (a) the COP of the heat pump and (b) the rate of heat absorption from outside air COP 3.651V& QL 4 465 kW COP 6.356 & QL 8.570 kW COP = 5432 & QL 9.653 kW COP 1.346& QL= 2.784 kWarrow_forwardRefrigerant-134a enters the compressor of a refrigerator as superheated vapor at 0.22 MPa and 27 C at a rate of 0.07 kg/s, and it leaves at 1.2 MPa and 73°C. The refrigerant is cooled in the condenser to 44°C and 1.16 MPa, and t is throttied to 0.21 MPa. Disregarding any heat transfer and pressure drops in the connecting lines between the components, show the cycle on a T-s diagram with respect to saturation lines, and determine (a) the rate of heat removal from the refrigerated space and the power input to the compressor, (b) the isentropic efficiency of the compressor, and (c) the COP of the refrigerator.arrow_forward
- The mass flow rate of the refrigerant in a Single Stage Vapor Compression (SSVC) refrigeration system is 0.015 kg/s and the evaporating and condensing temperatures shall be -20°C and 50°C, respectively. Determine the work of compressor in kW.arrow_forwardAn ammonia compressor operates on an evaporator pressure of 291.57 kPa and a condenser pressure of 1557 kPa. A Heat Exchanger is installed thus superheating the refrigerant by 100C and a subcooling by 50 C. The system is used to cool water at 2 kg/s from 250 C to 150 C. Given: h1=1476 kJ/kg , h2=1752 kJ/kg . Determine the ff: a.) mass flow of reffrigerant. kg/s b.) compressor work. kw c.) mass flow of cooling water needed in the condenser for a temp. drop of 180F. kg/sarrow_forwardDetermine the rate of heat released (in kW) by the steam with 88.0% quality that enters the evaporator at 1800 kg/h at 132C and exits as a subcooled liquid at 100C. Assume that the condensate outlet pressure is the same as the steam inlet pressure. The specific heat of liquid water is 4.187 kJ/kgC.arrow_forward
- can any one help ?arrow_forwardA refrigeration system uses a water-cooled condenser for rejecting the waste heat. The system absorbs heat from a space at 25°F at a rate of 21,000 Btu/h. Water enters the condenser at 65°F at a rate of 1.45 lbm/s. The COP of the system is estimated to be 1.9. Determine the maximum possible COP of the system. The specific heat of water is 1.0 Btu/bm·°F.arrow_forwardA refrigeration system absorbs heat from a space at 2 °C at a rate of 6.9 kW and rejects heat to water in the condenser. Water enters the condenser at 16 °C at a rate of 0.27 kg/s. The COP of the system is estimated to be 1.85. Determine (a) the power input to the system, (b) the temperature of the water at the exit of the condenser, and (c) the second-law efficiency and the exergy destruction for the refrigerator. Take the dead-state temperature to be the inlet temperature of water in the condenser. The specific heat of water is 4.18 kJ/kg.°C.arrow_forward
- Ces An air-conditioning system operating on the reversed Carnot cycle is required to transfer heat from a house at a rate of 760 kJ/min to maintain its temperature at 24°C. If the outdoor air temperature is 35°C, determine the power required to operate this air-conditioning system. The power required to operate this air-conditioner system is kW.arrow_forwardRefrigerant 134a enters the condenser of a residential heat pump at 900 kPa and 40 degrees C at a rate of 0.02 kg/s and leaves at 900 kPa as a saturated liquid. If the compressor consumes 1.2 kW of power, determine the COP of the heat pump and the rate of absorption from the outside air.arrow_forwardA heat pump with refrigerant-134a as the working fluid is used to keep a space at 25 C by absorbing heat from geothermal water that enters the evaporator at 60 C at a rate of 0.065 kg/s and leaves at 40 C. Refrigerant enters the evaporator at 12 C with a quality of 15 percent and leaves at the same pressure as saturated vapor. If the compressor consumes 1.6 kW of power, determine; (a) the mass flow rate of the refrigerant, (b) the rate of heat supply, (c) the COP, and (d) the minimum power input to the compressor for the same rate of heat supply.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
The Refrigeration Cycle Explained - The Four Major Components; Author: HVAC Know It All;https://www.youtube.com/watch?v=zfciSvOZDUY;License: Standard YouTube License, CC-BY