GE Net Income 2007–2011 The annual net income of General Electric for the period 2007–2011 could be 8 approximated by P ( t ) = 1.6 t 2 − 15 t + 46 billion dollars ( 2 ≤ t ≤ 6 ) , Where t is time in year since 2005. GE net income ($ billions) a. Compute P ' ( t ) . How fast was GE’s annual net income changing in 2008? (Be careful to give correct units of measurement.) b. According to the model, GE’s annual net income (A) increased at a faster and faster rate (B) increased at a slower and slower rate (C) decreased at a faster and faster rate (D) decreased at a slower and slower rate during the first 2 years shown (the interval [ 2 , 4 ] ). Justify your answer in two ways: geometrically, reasoning entirely from the graph, and algebraically, reasoning from the derivative of P . [ HINT: See Example 4.]
GE Net Income 2007–2011 The annual net income of General Electric for the period 2007–2011 could be 8 approximated by P ( t ) = 1.6 t 2 − 15 t + 46 billion dollars ( 2 ≤ t ≤ 6 ) , Where t is time in year since 2005. GE net income ($ billions) a. Compute P ' ( t ) . How fast was GE’s annual net income changing in 2008? (Be careful to give correct units of measurement.) b. According to the model, GE’s annual net income (A) increased at a faster and faster rate (B) increased at a slower and slower rate (C) decreased at a faster and faster rate (D) decreased at a slower and slower rate during the first 2 years shown (the interval [ 2 , 4 ] ). Justify your answer in two ways: geometrically, reasoning entirely from the graph, and algebraically, reasoning from the derivative of P . [ HINT: See Example 4.]
Solution Summary: The author calculates the derivative P'(t) and the rate of change of General Electrical's net annual income in year 2008.
GE Net Income 2007–2011 The annual net income of General Electric for the period 2007–2011 could be 8 approximated by
P
(
t
)
=
1.6
t
2
−
15
t
+
46 billion dollars
(
2
≤
t
≤
6
)
,
Where t is time in year since 2005.
GE net income ($ billions)
a. Compute
P
'
(
t
)
. How fast was GE’s annual net income changing in 2008? (Be careful to give correct units of measurement.)
b. According to the model, GE’s annual net income
(A) increased at a faster and faster rate
(B) increased at a slower and slower rate
(C) decreased at a faster and faster rate
(D) decreased at a slower and slower rate during the first 2 years shown (the interval
[
2
,
4
]
). Justify your answer in two ways: geometrically, reasoning entirely from the graph, and algebraically, reasoning from the derivative of P. [HINT: See Example 4.]
1 pts
Let F and G be vector fields such that ▼ × F(0, 0, 0) = (0.76, -9.78, 3.29), G(0, 0, 0) = (−3.99, 6.15, 2.94), and
G is irrotational. Then sin(5V (F × G)) at (0, 0, 0) is
Question 1
-0.246
0.072
-0.934
0.478
-0.914
-0.855
0.710
0.262
.
2. Answer the following questions.
(A) [50%] Given the vector field F(x, y, z) = (x²y, e", yz²), verify the differential identity
Vx (VF) V(V •F) - V²F
(B) [50%] Remark. You are confined to use the differential identities.
Let u and v be scalar fields, and F be a vector field given by
F = (Vu) x (Vv)
(i) Show that F is solenoidal (or incompressible).
(ii) Show that
G =
(uvv – vVu)
is a vector potential for F.
A driver is traveling along a straight road when a buffalo runs into the street. This driver has a reaction time of 0.75 seconds. When the driver sees the buffalo he is traveling at 44 ft/s, his car can decelerate at 2 ft/s^2 when the brakes are applied. What is the stopping distance between when the driver first saw the buffalo, to when the car stops.
Chapter 11 Solutions
Finite Mathematics and Applied Calculus (MindTap Course List)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY