Concept explainers
(a)
The free-fall acceleration on the surface of the satellite.
(a)
Answer to Problem 9P
The free-fall acceleration on the surface of the satellite is
Explanation of Solution
Write the expression for the force on the test object.
Here,
Write the expression for the gravitational force.
Here,
Equate equation (I) and (II) to solve for
Conclusion:
Substitute
Therefore, the free-fall acceleration on the surface of the satellite is
(b)
The time taken by the athlete to climb the cliff vertically.
(b)
Answer to Problem 9P
The time taken by the athlete to climb the cliff vertically is
Explanation of Solution
Write the expression for the equation of motion in vertical direction.
Here,
Set the acceleration in the vertical direction,
Use equation (V) in (IV) to solve for
If the object starts from the rest, the equation (VI) becomes,
Use equation (VII) to solve for
Conclusion:
Substitute
Therefore, the time taken by the athlete to climb the cliff vertically is
(c)
The distance covered by the athlete from the base of the vertical cliff to the icy surface of the satellite.
(c)
Answer to Problem 9P
The distance covered by the athlete from the base of the vertical cliff to the icy surface of the satellite is
Explanation of Solution
Write the expression for the equation of motion in horizontal direction
Here,
Conclusion:
Substitute
Therefore, the distance covered by the athlete from the base of the vertical cliff to the icy surface of the satellite is
(d)
The vector impact velocity of the athlete in climbing the cliff.
(d)
Answer to Problem 9P
The vector impact velocity of the athlete in climbing the cliff is
Explanation of Solution
Write the expression for the velocity vector.
Here, is the final velocity vector,
Write the expression for
Here,
Write the expression for the magnitude of the
Write the expression for the angle of the cliff making with the
Here,
Conclusion:
Substitute
Substitute
Substitute
Therefore, the vector impact velocity of the athlete in climbing the cliff is
Want to see more full solutions like this?
Chapter 11 Solutions
Principles of Physics: A Calculus-Based Text
- No chatgpt plsarrow_forwardhelp me with the experimental set up for the excel i did. the grapharrow_forwardWhich of the following best describes how to calculate the average acceleration of any object? Average acceleration is always halfway between the initial acceleration of an object and its final acceleration. Average acceleration is always equal to the change in velocity of an object divided by the time interval. Average acceleration is always equal to the displacement of an object divided by the time interval. Average acceleration is always equal to the change in speed of an object divided by the time interval.arrow_forward
- The figure shows the velocity versus time graph for a car driving on a straight road. Which of the following best describes the acceleration of the car? v (m/s) t(s) The acceleration of the car is negative and decreasing. The acceleration of the car is constant. The acceleration of the car is positive and increasing. The acceleration of the car is positive and decreasing. The acceleration of the car is negative and increasing.arrow_forwardWhich figure could represent the velocity versus time graph of a motorcycle whose speed is increasing? v (m/s) v (m/s) t(s) t(s)arrow_forwardUnlike speed, velocity is a the statement? Poisition. Direction. Vector. Scalar. quantity. Which one of the following completesarrow_forward
- No chatgpt pls will upvote Already got wrong chatgpt answerarrow_forward3.63 • Leaping the River II. A physics professor did daredevil stunts in his spare time. His last stunt was an attempt to jump across a river on a motorcycle (Fig. P3.63). The takeoff ramp was inclined at 53.0°, the river was 40.0 m wide, and the far bank was 15.0 m lower than the top of the ramp. The river itself was 100 m below the ramp. Ignore air resistance. (a) What should his speed have been at the top of the ramp to have just made it to the edge of the far bank? (b) If his speed was only half the value found in part (a), where did he land? Figure P3.63 53.0° 100 m 40.0 m→ 15.0 marrow_forwardPlease solve and answer the question correctly please. Thank you!!arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning