Concept explainers
(a)
The maximum height gain by the space vehicle.
(a)
Answer to Problem 36P
The maximum height gain by the space vehicle is
Explanation of Solution
Given info: The initial speed of the vehicle is
Formula to calculate the maximum height gain by the space vehicle by the conservation of energy is,
Here,
Formula to calculate the kinetic energy of the space vehicle at the Earth’s surface is,
Here,
Formula to calculate the potential energy of the space vehicle at the Earth’s surface is,
Here,
The mass of the Earth is
The value of universal gravitational constant is
Formula to calculate the potential energy space vehicle at the altitude is,
Here,
The final kinetic energy of the space vehicle is zero because the space vehicle is rest at that point.
Substitute
Further solve the above expression.
Write the expression for the acceleration due to gravity.
Here,
Substitute
Conclusion:
Therefore, the maximum height gain by the space vehicle is
(b)
The speed of the meteorite to strike the Earth.
(b)
Answer to Problem 36P
The speed of the meteorite to strike the Earth is
Explanation of Solution
Given info: The initial speed of the vehicle is
From equation (2), the expression for the speed is given as,
Here,
Further solve the above expression.
Substitute
Conclusion:
Therefore, the speed of the meteorite to strike the Earth is
(c)
To show: The result from part (a) is consistent with
(c)
Answer to Problem 36P
The result from part (a) is consistent with
Explanation of Solution
Given info: The initial speed of the vehicle is
Consider a baseball is tossed up with an initial speed that is very small as compared to the escape speed.
Here,
As the initial speed that is very small. So the initial speed of the vehicle tends to be zero.
From part (a), the maximum height gain by the space vehicle is,
Substitute
Write the expression for the maximum height of the projectile motion of the baseball.
Here,
From maximum height of the projectile motion of the baseball, the value of angle of the projectile motion of the baseball should be
Substitute
From equations (3) and (4).
So, the maximum height gain by the space vehicle is consistent with
Conclusion:
Therefore, the result from part (a) is consistent with
Want to see more full solutions like this?
Chapter 11 Solutions
Principles of Physics: A Calculus-Based Text
- air is pushed steadily though a forced air pipe at a steady speed of 4.0 m/s. the pipe measures 56 cm by 22 cm. how fast will air move though a narrower portion of the pipe that is also rectangular and measures 32 cm by 22 cmarrow_forwardNo chatgpt pls will upvotearrow_forward13.87 ... Interplanetary Navigation. The most efficient way to send a spacecraft from the earth to another planet is by using a Hohmann transfer orbit (Fig. P13.87). If the orbits of the departure and destination planets are circular, the Hohmann transfer orbit is an elliptical orbit whose perihelion and aphelion are tangent to the orbits of the two planets. The rockets are fired briefly at the depar- ture planet to put the spacecraft into the transfer orbit; the spacecraft then coasts until it reaches the destination planet. The rockets are then fired again to put the spacecraft into the same orbit about the sun as the destination planet. (a) For a flight from earth to Mars, in what direction must the rockets be fired at the earth and at Mars: in the direction of motion, or opposite the direction of motion? What about for a flight from Mars to the earth? (b) How long does a one- way trip from the the earth to Mars take, between the firings of the rockets? (c) To reach Mars from the…arrow_forward
- No chatgpt pls will upvotearrow_forwarda cubic foot of argon at 20 degrees celsius is isentropically compressed from 1 atm to 425 KPa. What is the new temperature and density?arrow_forwardCalculate the variance of the calculated accelerations. The free fall height was 1753 mm. The measured release and catch times were: 222.22 800.00 61.11 641.67 0.00 588.89 11.11 588.89 8.33 588.89 11.11 588.89 5.56 586.11 2.78 583.33 Give in the answer window the calculated repeated experiment variance in m/s2.arrow_forward
- How can i solve this if n1 (refractive index of gas) and n2 (refractive index of plastic) is not known. And the brewsters angle isn't knownarrow_forward2. Consider the situation described in problem 1 where light emerges horizontally from ground level. Take k = 0.0020 m' and no = 1.0001 and find at which horizontal distance, x, the ray reaches a height of y = 1.5 m.arrow_forward2-3. Consider the situation of the reflection of a pulse at the interface of two string described in the previous problem. In addition to the net disturbances being equal at the junction, the slope of the net disturbances must also be equal at the junction at all times. Given that p1 = 4.0 g/m, H2 = 9.0 g/m and Aj = 0.50 cm find 2. A, (Answer: -0.10 cm) and 3. Ay. (Answer: 0.40 cm)please I need to show all work step by step problems 2 and 3arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning