
Concept explainers
(a)
The radius of the orbit of the hydrogen atom in the first excited state.
(a)

Answer to Problem 41P
The radius of the orbit of the hydrogen atom in the first excited state is
Explanation of Solution
Write the expression for the radius of the orbit in the hydrogen atom relating the Bohr radius.
Here,
Conclusion:
Substitute
Therefore, the radius of the orbit of the hydrogen atom in the first excited state is
(b)
The linear momentum of the electron in the hydrogen atom.
(b)

Answer to Problem 41P
The linear momentum of the electron in the hydrogen atom is
Explanation of Solution
Write the expression for the columbic force of attraction.
Here,
Write the expression for the
Here,
Equate equation (II) and (III) to solve for
Write the expression for the linear momentum.
Here,
Use equation (IV) to solve for
Conclusion:
Substitute
Therefore, The linear momentum of the electron in the hydrogen atom is
(c)
The
(c)

Answer to Problem 41P
The angular momentum of the electron is
Explanation of Solution
Write the expression for the angular momentum.
Here,
Conclusion:
Substitute
Therefore, the angular momentum of the electron is
(d)
The kinetic energy of the electron.
(d)

Answer to Problem 41P
The kinetic energy of the electron is
Explanation of Solution
Write the expression for the kinetic energy of the electron.
Use equation (IV) to solve for
Conclusion:
Substitute
Therefore, the kinetic energy of the electron is
(e)
The potential energy of the electron.
(e)

Answer to Problem 41P
The potential energy of the electron is
Explanation of Solution
Write the expression for the potential energy.
Here,
Conclusion:
Substitute
Therefore, the potential energy of the electron is
(f)
The total energy of the system.
(f)

Answer to Problem 41P
The total energy of the system is
Explanation of Solution
Write the expression for the total energy of the system.
Here,
Conclusion:
Substitute
Therefore, the total energy of the system is
Want to see more full solutions like this?
Chapter 11 Solutions
Principles of Physics: A Calculus-Based Text
- (a) For a spherical capacitor with inner radius a and outer radius b, we have the following for the capacitance. ab C = k₂(b- a) 0.0695 m 0.145 m (8.99 × 10º N · m²/c²)( [0.145 m- 0.0695 m × 10-11 F = PF IIarrow_forwardA pendulum bob A (0.5 kg) is given an initialspeed of vA = 4 m/s when the chord ishorizontal. It then hits a stationary block B (1kg) which then slides to a maximum distanced before it stops. Determine the value of d.The coefficient of static friction between theblock and the plane is μk = 0.2. The coefficientof restitution between A and B is e = 0.8.Ans: d=1.0034 marrow_forwardFigure 29-43 Problem 12. ••13 In Fig. 29-44, point P₁ is at distance R = 13.1 cm on the perpendicular bisector of a straight wire of length L = 18.0 cm carrying current i = 58.2 mA. (Note that the wire is not long.) What is the magnitude of the magnetic field at P₁ due to i? P2° R R Larrow_forward
- Checkpoint 1 The figure shows the current i in a single-loop circuit with a battery B and a resistance R (and wires of neg- ligible resistance). (a) Should the emf arrow at B be drawn pointing leftward or rightward? At points a, B C R b, and c, rank (b) the magnitude of the current, (c) the electric potential, and (d) the electric potential energy of the charge carriers, greatest first.arrow_forwardPls help ASAParrow_forwardPls help asaparrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





