Concept explainers
(a)
The total energy of the earth-satellite system.
(a)
Answer to Problem 60P
The total energy of the earth-satellite system is
Explanation of Solution
Write the expression for the total energy of the earth-satellite system.
Here,
Write the expression for the
Here,
Write the expression for
Here,
Use equation (II) and (III) in (I) to solve for
Conclusion:
Substitute
Therefore, the total energy of the earth-satellite system is
(b)
The magnitude of the
(b)
Answer to Problem 60P
The magnitude of the angular momentum of the satellite is
Explanation of Solution
Write the expression for the angular momentum of the satellite.
Here,
The velocity vector and the position vector are perpendicular to each other at point of the orbit.
Conclusion:
Substitute
Therefore, the magnitude of the angular momentum of the satellite is
(c)
The speed of the satellite at apogee and the distance from the center of the earth.
(c)
Answer to Problem 60P
The speed of the satellite at apogee is
Explanation of Solution
The energy and angular momentum of the earth-satellite system is conserved.
Write the expression for the earth-satellite system at apogee.
Here,
Use equation (V) to solve for
Use equation (VII) in (VI) to solve for
Conclusion:
Substitute
The smaller value of represents the velocity at the apogee while the larger value refers to the velocity at perigee.
Substitute
Therefore, the speed of the satellite at apogee is
(d)
The semi-major axis of the orbit.
(d)
Answer to Problem 60P
The semi-major axis of the orbit is
Explanation of Solution
Write the expression for the major axis.
Use equation (IX) to solve for
Conclusion:
Substitute
Therefore, the semi-major axis of the orbit is
(e)
The period of the revolution around the orbit.
(e)
Answer to Problem 60P
The period of the revolution is
Explanation of Solution
Write the expression for the period of revolution using Kepler law of planetary motion.
Here,
Conclusion:
Substitute
Therefore, the period of the revolution is
Want to see more full solutions like this?
Chapter 11 Solutions
Principles of Physics: A Calculus-Based Text
- air is pushed steadily though a forced air pipe at a steady speed of 4.0 m/s. the pipe measures 56 cm by 22 cm. how fast will air move though a narrower portion of the pipe that is also rectangular and measures 32 cm by 22 cmarrow_forwardNo chatgpt pls will upvotearrow_forward13.87 ... Interplanetary Navigation. The most efficient way to send a spacecraft from the earth to another planet is by using a Hohmann transfer orbit (Fig. P13.87). If the orbits of the departure and destination planets are circular, the Hohmann transfer orbit is an elliptical orbit whose perihelion and aphelion are tangent to the orbits of the two planets. The rockets are fired briefly at the depar- ture planet to put the spacecraft into the transfer orbit; the spacecraft then coasts until it reaches the destination planet. The rockets are then fired again to put the spacecraft into the same orbit about the sun as the destination planet. (a) For a flight from earth to Mars, in what direction must the rockets be fired at the earth and at Mars: in the direction of motion, or opposite the direction of motion? What about for a flight from Mars to the earth? (b) How long does a one- way trip from the the earth to Mars take, between the firings of the rockets? (c) To reach Mars from the…arrow_forward
- No chatgpt pls will upvotearrow_forwarda cubic foot of argon at 20 degrees celsius is isentropically compressed from 1 atm to 425 KPa. What is the new temperature and density?arrow_forwardCalculate the variance of the calculated accelerations. The free fall height was 1753 mm. The measured release and catch times were: 222.22 800.00 61.11 641.67 0.00 588.89 11.11 588.89 8.33 588.89 11.11 588.89 5.56 586.11 2.78 583.33 Give in the answer window the calculated repeated experiment variance in m/s2.arrow_forward
- How can i solve this if n1 (refractive index of gas) and n2 (refractive index of plastic) is not known. And the brewsters angle isn't knownarrow_forward2. Consider the situation described in problem 1 where light emerges horizontally from ground level. Take k = 0.0020 m' and no = 1.0001 and find at which horizontal distance, x, the ray reaches a height of y = 1.5 m.arrow_forward2-3. Consider the situation of the reflection of a pulse at the interface of two string described in the previous problem. In addition to the net disturbances being equal at the junction, the slope of the net disturbances must also be equal at the junction at all times. Given that p1 = 4.0 g/m, H2 = 9.0 g/m and Aj = 0.50 cm find 2. A, (Answer: -0.10 cm) and 3. Ay. (Answer: 0.40 cm)please I need to show all work step by step problems 2 and 3arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University