![Principles of Physics: A Calculus-Based Text](https://www.bartleby.com/isbn_cover_images/9781133104261/9781133104261_largeCoverImage.gif)
Concept explainers
(a)
The total energy of the earth-satellite system.
(a)
![Check Mark](/static/check-mark.png)
Answer to Problem 60P
The total energy of the earth-satellite system is
Explanation of Solution
Write the expression for the total energy of the earth-satellite system.
Here,
Write the expression for the
Here,
Write the expression for
Here,
Use equation (II) and (III) in (I) to solve for
Conclusion:
Substitute
Therefore, the total energy of the earth-satellite system is
(b)
The magnitude of the
(b)
![Check Mark](/static/check-mark.png)
Answer to Problem 60P
The magnitude of the angular momentum of the satellite is
Explanation of Solution
Write the expression for the angular momentum of the satellite.
Here,
The velocity vector and the position vector are perpendicular to each other at point of the orbit.
Conclusion:
Substitute
Therefore, the magnitude of the angular momentum of the satellite is
(c)
The speed of the satellite at apogee and the distance from the center of the earth.
(c)
![Check Mark](/static/check-mark.png)
Answer to Problem 60P
The speed of the satellite at apogee is
Explanation of Solution
The energy and angular momentum of the earth-satellite system is conserved.
Write the expression for the earth-satellite system at apogee.
Here,
Use equation (V) to solve for
Use equation (VII) in (VI) to solve for
Conclusion:
Substitute
The smaller value of represents the velocity at the apogee while the larger value refers to the velocity at perigee.
Substitute
Therefore, the speed of the satellite at apogee is
(d)
The semi-major axis of the orbit.
(d)
![Check Mark](/static/check-mark.png)
Answer to Problem 60P
The semi-major axis of the orbit is
Explanation of Solution
Write the expression for the major axis.
Use equation (IX) to solve for
Conclusion:
Substitute
Therefore, the semi-major axis of the orbit is
(e)
The period of the revolution around the orbit.
(e)
![Check Mark](/static/check-mark.png)
Answer to Problem 60P
The period of the revolution is
Explanation of Solution
Write the expression for the period of revolution using Kepler law of planetary motion.
Here,
Conclusion:
Substitute
Therefore, the period of the revolution is
Want to see more full solutions like this?
Chapter 11 Solutions
Principles of Physics: A Calculus-Based Text
- No chatgpt plsarrow_forward3arrow_forward13. After a gust of wind, an orb weaver spider with a mass of 35 g, hanging on a strand of web of length L = .420 m, undergoes simple harmonic motion (SHO) with an amplitude A and period T. If the spider climbs 12.0 cm up the web without perturbing the oscillation otherwise, what is the period of oscillation, in Hz to three significant figures?arrow_forward
- 15. An object of mass m = 8.10 kg is attached to an ideal spring and allowed to hang in the earth's gravitational field. The spring stretches 23.10 cm before it reaches its equilibrium position. The mass then undergoes simple harmonic motion with an amplitude of 10.5 cm. Calculate the velocity of the mass in m/s at a time t= 1.00s to three significant figures.arrow_forwardplease solve and answer the question correctly. Thank you!!arrow_forward18arrow_forward
- 1. Some 1800 years ago Roman soldiers effectively used slings as deadly weapons. The length of these slings averaged about 81 cm and the lead shot that they used weighed about 30 grams. If in the wind up to a release, the shot rotated around the Roman slinger with a period of .14 seconds. Find the maximum acceleration of the shot before being released in m/s^2 and report it to two significant figures.arrow_forward16arrow_forward11. A small charged plastic ball is vertically above another charged small ball in a frictionless test tube as shown in the figure. The balls are in equilibrium at a distance d= 2.0 cm apart. If the charge on one ball is tripled, find the new equilibrium distance between the balls in cm and report it to the proper number of significant figures.arrow_forward
- 12. The electric field at a point 1.3 cm from a small object points toward the object with a strength of 180,000 N/C. Find the object's charge q, in nC to the proper number of significant figures. k = 1/4πε0 = 8.99 × 10^9 N ∙ m^2/C^2arrow_forward14. When the potential difference between the plates of an ideal air-filled parallel plate capacitor is 35 V, the electric field between the plates has a strength of 670 V/m. If the plate area is 4.0 × 10^-2 m^2, what is the capacitance of this capacitor in pF? (ε0 = 8.85 × 10^-12 C^2/N ∙ m^2)arrow_forward10. A small styrofoam ball of mass 0.500 g is placed in an electric field of 1140 N/C pointing downward. What excess charge must be placed on the ball for it to remain suspended in the field? Report your answer in micro-Coulombs to three significant figures.arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133104261/9781133104261_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780534408961/9780534408961_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285737027/9781285737027_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168277/9781938168277_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133939146/9781133939146_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305116399/9781305116399_smallCoverImage.gif)