Concept explainers
(a)
The time taken by the satellite to complete one orbit.
(a)
Answer to Problem 29P
The time taken by the satellite to complete one orbit is
Explanation of Solution
Write the expression for the
Here,
Write the expression for the gravitational force.
Here,
Equate equation (I) and (II) to solve for
Write the expression for
Here,
Write the expression for the period of revolution.
Here,
Use equation (IV) and (III) in (V) to solve for
Conclusion:
Substitute
Therefore, the time taken by the satellite to complete one orbit is
(b)
The speed of the satellite.
(b)
Answer to Problem 29P
The speed of the satellite is
Explanation of Solution
Use equation (IV) in (III) to solve for
Conclusion:
Substitute
Therefore, the speed of the satellite is
(c)
The minimum input energy needed to place the satellite in the orbit.
(c)
Answer to Problem 29P
The minimum input energy needed to place the satellite in the orbit is
Explanation of Solution
Write the expression for minimum energy needed to place the satellite in the orbit.
Here,
Write the expression for
Here,
Write the expression for
Use equation (X) in (IX) to solve for
Write the expression for the
Write the expression for
Write the expression for
Use equation (IV) in (XIII) to solve for
Use equation (XV), (XIII), (XII), (XI) in (VIII) to solve for
Conclusion:
Substitute
Therefore, the minimum input energy needed to place the satellite in the orbit is
Want to see more full solutions like this?
Chapter 11 Solutions
Principles of Physics: A Calculus-Based Text
- Rank the following quantities of energy from largest to the smallest. State if any are equal. (a) the absolute value of the average potential energy of the SunEarth system (b) the average kinetic energy of the Earth in its orbital motion relative to the Sun (c) the absolute value of the total energy of the SunEarth systemarrow_forwardA system consists of five particles. How many terms appear in the expression for the total gravitational potential energy of the system? (a) 4 (b) 5 (c) 10 (d) 20 (e) 25arrow_forwardSpace debris left from old satellites and their launchers is becoming a hazard to other satellites. (a) Calculate the speed of a satellite in an orbit 900 km above Earth’s surface. (b) Suppose a loose rivet is in an orbit of the same radius that intersects the satellite’s orbit at an angle of 90 . What is the velocity of the rivet relative to the satellite just before striking it? (c) If its mass is 0.500 g, and it comes to rest inside the satellite, how much energy in joules is generated by the collision? (Assume the satellite’s velocity does not change appreciably, because it mass is much greater than the rivets’s.)arrow_forward
- Find the escape speed of a projectile from the surface of Jupiter.arrow_forwardA satellite of mass 1000 kg is in circular orbit about Earth. The radius of the orbit of the satellite is equal to two times the radius of Earth. (a) How far away is the satellite? (b) Find the kinetic, potential, and total energies of the satellite.arrow_forwardWhile describing a circular orbit 200 mi above the earth, a space vehicle launches a 6000-lb communications satellite. Determine (a) the additional energy required to place the satellite in a geosynchronous orbit at an altitude of 22,000 mi above the surface of the earth, (b) the energy required to place the satellite in the same orbit by launching it from the surface of the earth, excluding the energy needed to overcome air resistance. (A geosynchronous orbit is a circular orbit in which the satellite appears stationary with respect to the ground.)arrow_forward
- A 475 kg satellite is in a circular orbit at an altitude of 600 km above the Earth's surface. Because of air friction, the satellite eventually falls to the Earth's surface, where it hits the ground with a speed of 2.40 km/s. How much energy was transformed into internal energy by means of air frictionarrow_forwardThe energy to place a satellite into orbit consists of the work against gravity and addition kinetic energy. In this problem, you get the chance to calculate both components (gravitational and kinetic). (There is also 'wasted' energy to lift and propel the fuel, but we are ignoring that in this problem and focusing only on the bare minimum.) What is the gravitational work required to launch a satellite of mass m from Earth's surface to a circular orbit at an altitude of 700 km? Express your answer in terms of m, g, and R. Please use at least 5 significant figures in your answers. Constants you may find useful: G = 6.67 x 10-11 N·m2/kg2; MEarth = 5.98 x 1024 kg; REarth = 6.38 x 106 m. _______ *mgR How much kinetic energy must be added, assuming the satellite is launched from the equator, where the initial velocity is 463 m/s? _______ *mgR What is the total energy per kg of payload? (Use g=9.80 m/s2.)_______ MJ/kgarrow_forwardYou are out on a date, eating dinner in a restaurant that has several television screens. Most of the screens are showing sports events, but one near you and your date is showing a discussion of an upcoming voyage to Mars. (a) Your date says, “I wonder how long it takes to get to Mars?” Wanting to impress your date, you grab a napkin and draw as shownon it. Even more impressively, you tell your date that the minimum-energy transfer orbit from Earth to Mars is an elliptical trajectory with the departure planet corresponding to the perihelion of the ellipse and the arrival planet at the aphelion. You pull out your smartphone, activate the calculator feature, and perform a calculation on another napkin to answer the question above that your date asked about the transfer time interval to Mars on this particular trajectory. (b) What If? Your date is impressed, but then asks you to determine the transit time to an inner planet, like Venus.arrow_forward
- A 977-kg satellite orbits the Earth at a constant altitude of 101-km. (a) How much energy must be added to the system to move the satellite into a circular orbit with altitude 205 km? 892.8 How is the total energy of an object in circular orbit related to the potential energy? MJ (b) What is the change in the system's kinetic energy? 178 Is the satellite moving faster or slower when it's orbit is at a higher altitude? MJ (c) What is the change in the system's potential energy? MJarrow_forwardAn asteroid closely passes the Earth at a range of 17200 mi and relative speed of 7.8 km/s. The diameter is estimated at 30 m with a specific gravity of 3. If this asteroid had impacted Earth, how much energy would have been released? Express this quantity in units of mega- tons (Mton) where a megaton is the energy released by one million metric tons of TNT explosive. A metric ton is 1000 kg and the explosive energy density of TNT is 4184 J/g. Hint: If the asteroid hits the Earth, its relative velocity becomes zero. Ignore any change in asteroid velocity due to gravitational acceleration or air resistance.arrow_forwardIn a futuristic scenario, you are assigned the mission of making an enemy satellite that is in a circular orbit around Earth inoperative. You know you cannot destroy the satellite, as it is well protected against attack, but you can try to knock it out of its orbit so it will fly away and never return. What is the minimum amount of work ? applied to the satellite that is required to accomplish that? The satellite's mass and altitude are 975 kg and 259 km. Earth's mass and radius are 5.98×1024 kg and 6370 km.W = ? Jarrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning