Concept explainers
BIO Peak Pedaling Torque The downward force produced by the quadriceps muscles during the power stroke of bicycle-pedaling motion is shown in Figure 11-67 as a function of the crank angle ϕ (see Figure 11-39.The force from these muscles decreases linearly, but the torque depends on the crank angle according to τ = rFsin (180° − ϕ). Use the information in the graph, together with a computer spreadsheet to find the angle ϕ at which the pedaling torque produced by the quadriceps muscle is a maximum. (Note that the actual torque applied to the crank is a result of the action of many muscles in addition to the quadriceps).
Figure 11-67 Problem 89
Want to see the full answer?
Check out a sample textbook solutionChapter 11 Solutions
Physics, Books a la Carte Edition (5th Edition)
Additional Science Textbook Solutions
Cosmic Perspective Fundamentals
Microbiology: An Introduction
Campbell Biology: Concepts & Connections (9th Edition)
Chemistry (7th Edition)
Anatomy & Physiology (6th Edition)
Human Anatomy & Physiology (2nd Edition)
- (a) When opening a door, you push on it perpendicularly with a force of 55.0 N at a distance of 0.850m from the hinges. What torque are you exerting relative to the hinges? (b) Does it matter if you push at the same height as the hinges?arrow_forwardJohn is pushing his daughter Rachel in a wheelbarrow when it is stopped by a brick 8.00 cm high (Fig. P12.15). The handles make an angle of = 15.0 with the ground. Due to the weight of Rachel and the wheelbarrow, a downward force of 400 N is exerted at the center of the wheel, which has a radius of 20.0 cm. (a) What force must John apply along the handles to just start the wheel over the brick? (b) What is the force (magnitude and direction) that the brick exerts on the wheel just as the wheel begins to lift over the brick? In both parts, assume the brick remains fixed and does not slide along the ground. Also assume the force applied by John is directed exactly toward the center of the wheel.arrow_forward(a) When opening a door, you push on it perpendicularly with a force of 55.0 N at a distance of 0.850 m from the hinges. What torque are you exerting relative to the hinges? (b) Does it matter if you push at the same height as the hinges? There is only one pair of hinges.arrow_forward
- A uniform solid disk and a uniform hoop are placed side by side at the top of an incline of height h. (a) If they are released from rest and roll without slipping, which object reaches the bottom first? (b) Verify your answer by calculating their speeds when they reach the bottom in terms of h.arrow_forwardAnswer yes or no to the following questions. (a) Is it possible to calculate the torque acting on a rigid object without specifying an axis of rotation? (b) Is the torque independent of the location of the axis of rotation?arrow_forwardA potters wheel rotates with an angular acceleration = 4at3 3bt2, where t is the time in seconds, a and b areconstants, and has units of radians per second squared. Theinitial position of the wheel is 0 and the initial angular velocityis 0. Obtain expressions for the angular velocity and the angular displacement of the wheel as a function of time.arrow_forward
- A uniform cylindrical grindstion has a mass of 10 kg and a radius of 12 cm. (a) What is the rotational kinetic energy of the grindstone when it is rotating at 1.5103rev/min ? (b) After the grindstone’s motor is turned off, a knife blade is pressed against the outer edge coefficient of kinetic friction between the grindstone and the blade is 0.80. Use the work energy theorem to determine how many turns the grindstone makes before it stops.arrow_forwardA plank with a mass M = 6.00 kg rests on top of two identical, solid, cylindrical rollers that have R = 5.00 cm and m = 2.00 kg (Fig. P10.87). The plank is pulled by a constant horizontal force F of magnitude 6.00 N applied to the end of the plank and perpendicular to the axes of the cylinders (which are parallel). The cylinders roll without slipping on a Hat surface. There is also no slipping between the cylinders and the plank. (a) Find the initial acceleration of the plank at the moment the rollers are equidistant from the ends of the plank. (b) Find the acceleration of the rollers at this moment. (c) What friction forces are acting at this moment?arrow_forwardReview. A small object with mass 4.00 kg moves counterclockwise with constant angular speed 1.50 rad/s in a circle of radius 3.00 m centered at the origin. It starts at the point with position vector 3.00im. It then undergoes an angular displacement of 9.00 rad. (a) What is its new position vector? Use unit-vector notation for all vector answers. (b) In what quadrant is the particle located, and what angle does its position vector make with the positive x axis? (c) What is its velocity? (d) In what direction is it moving? (e) What is its acceleration? (f) Make a sketch of its position, velocity, and acceleration vectors. (g) What total force is exerted on the object?arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning