CE Consider the two rotating systems shown in Figure 11-55 each consisting of a mass m attached to a rod of negligible mass pivoted at one end. On the left, the mass is attached at the midpoint of the rod: to the right, it is attached to the free end of the rod. The rods are released from rest in the horizontal position at the same time When the rod to the left reaches the vertical position, is the rod to the right not yet vertical (location A), vertical (location B), or past vertical (location C)? Explain.
Figure 11-55 Problem 70
Want to see the full answer?
Check out a sample textbook solutionChapter 11 Solutions
Physics, Books a la Carte Edition (5th Edition)
Additional Science Textbook Solutions
Human Physiology: An Integrated Approach (8th Edition)
Chemistry: The Central Science (14th Edition)
Chemistry: Structure and Properties (2nd Edition)
Anatomy & Physiology (6th Edition)
Human Anatomy & Physiology (2nd Edition)
Campbell Essential Biology (7th Edition)
- An automobile engine can produce 200Nm of torque. Calculate the angular acceleration produced if 95.0 of this torque is applied to the drive shaft, axle, and rear wheels of a car, given the following information. The car is suspended so that the wheels can turn freely. Each wheel acts like a 15.0-kg disk that has a 0.180-m radius. The walls of each tire act like a 2.00-kg annular ring that has inside radius of 0.180 m and outside radius of 0.320 m. The tread of each tire acts like a 10.0-kg hoop of radius 0.330 m. The 14.0-kg axle acts like a rod that has a 2.00-cm radius. The 30.0-kg drive shaft acts like a rod that has a 3.20-cm radius.arrow_forwardConsider an object on a rotating disk a distance r from its center, held in place on the disk by static friction. Which of the following statements is not true concerning this object? (a) If the angular speed is constant, the object must have constant tangential speed. (b) If the angular speed is constant, the object is not accelerated. (c) The object has a tangential acceleration only if the disk has an angular acceleration. (d) If the disk has an angular acceleration, the object has both a centripetal acceleration and a tangential acceleration. (e) The object always has a centripetal acceleration except when the angular speed is zero.arrow_forwardA space station consists of a giant rotating hollow cylinder of mass 106kg including people on the station and a radius of 100.00 m. It is rotating in space at 3.30 rev/min in order to produce artificial gravity. If 100 people of an average mass of 65.00 kg spacewalk to an awaiting spaceship, what is the new rotation rate when all the people are off the station?arrow_forward
- A 60.0-kg woman stands at the rim of a horizontal turntable having a moment of inertia of 500 kg m2 and a radius of 2.00 m. The turntable is initially at rest and is free to rotate about a frictionless, vertical axle through its center. The woman then starts walking around the rim clock-wise (as viewed from above the system) at a constant speed of 1.50 m/s relative to Earth. (a) In what direction and with what angular speed does the turntable rotate? (b) How much work does the woman do to set herself and the turntable into motion?arrow_forwardTwo children (m = 30.0 kg each) stand opposite each otheron the edge of a merry-go-round. The merry-go-round, whichhas a mass of 1.80 102 kg and a radius of 1.5 m, is spinningat a constant rate of 0.50 rev/s. Treat the two children and themerry-go-round as a system. a. Calculate the angular momentum of the system, treating each child as a particle. b. Calculatethe total kinetic energy of the system. c. Both children walkhalf the distance toward the center of the merry-go-round. Calculate the final angular speed of the system.arrow_forwardA solid cylinder of mass 2.0 kg and radius 20 cm is rotating counterclockwise around a vertical axis through its center at 600 rev/min. A second solid cylinder of the same mass and radius is rotating clockwise around the same vertical axis at 900 rev/min. If the cylinders couple so that they rotate about the same vertical axis, what is the angular velocity of the combination?arrow_forward
- What is the value of the angular acceleration of the second hand of the clock on the wall?arrow_forwardA playground merry-go-round of radius R = 2.00 m has a moment of inertia I = 250 kg m2 and is rotating at 10.0 rev/min about a frictionless, vertical axle. Facing the axle, a 25.0-kg child hops onto the merry-go-round and manages to sit down on the edge. What is the new angular speed of the merry-go-round?arrow_forwardA man stands on a merry-go-round that is rotating at 2.5 rad/s. If the coefficient of static friction between the man’s shoes and the merry-go-round is s=0.5 , how far from the axis of rotation can he stand without sliding?arrow_forward
- A digital audio compact disc carries data, each bit of which occupies 0.6 m along a continuous spiral track from the inner circumference of the disc to the outside edge. A CD player turns the disc to carry the track counterclockwise above a lens at a constant speed of 1.30 m/s. Find the required angular speed (a) at the beginning of the recording, where the spiral has a radius of 2.30 cm, and (b) at the end of the recording, where the spiral has a radius of 5.80 cm. (c) A full-length recording lasts for 74 min 33 s. Find the average angular acceleration of the disc. (d) Assuming that the acceleration is constant, find the total angular displacement of the disc as it plays. (e) Find the total length of the track.arrow_forwardRepeat Example 10.15 in which the stick is free to have translational motion as well as rotational motion.arrow_forwardA potters wheela thick stone disk of radius 0.500 in and mass 100 kgis freely rotating at 50.0 rev/min. The potter can stop the wheel in 6.00 s by pressing a wet rag against the rim and exerting a radially inward force of 70.0 N. Find the effective coefficient of kinetic friction between wheel and rag.arrow_forward
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill