Predict/Calculate A circular saw blade accelerates from rest to an angular speed of 3620 rpm in 6.30 revolutions. (a) Find the torque exerted on the saw blade assuming it is a disk of radius 15.2 cm and mass 0.755 kg. (b) Is the angular speed of the saw blade after 3.15 revolutions greater than, less than, or equal to 1810 rpm? Explain. (c) Find the angular speed of the blade after 3.15 revolutions
Want to see the full answer?
Check out a sample textbook solutionChapter 11 Solutions
Physics, Books a la Carte Edition (5th Edition)
Additional Science Textbook Solutions
Campbell Biology (11th Edition)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Human Physiology: An Integrated Approach (8th Edition)
Introductory Chemistry (6th Edition)
Applications and Investigations in Earth Science (9th Edition)
Microbiology with Diseases by Body System (5th Edition)
- A student rides his bicycle at a constant speed of 3.00 m/s along a straight, level road. If the bikes tires each have a radius of 0.350 m, (a) what is the tires angular speed? (See Section 7.3.) (b) What is the net torque on each tire? (See Section 8.5.)arrow_forwardThe angular velocity of a flywheel with radius 1.0 m varies according to (t)=2.0t . Plot ac(t) and at(t) from t=0 to 3.0 s for r=1.0m . Analyze these results to explain when acat and when acat for a point on the flywheel at a radius of 1.0 m.arrow_forwardWhile punting a football, a kicker rotates his leg about the hip joint. The moment of inertia of the leg is 3.75kgm2 and its rotational kinetic energy is 175 J. (a) What is the angular velocity of the leg? (b) What is the velocity of tip of the punter’s shoe if it is 1.05 m from the hip joint?arrow_forward
- Consider an object on a rotating disk a distance r from its center, held in place on the disk by static friction. Which of the following statements is not true concerning this object? (a) If the angular speed is constant, the object must have constant tangential speed. (b) If the angular speed is constant, the object is not accelerated. (c) The object has a tangential acceleration only if the disk has an angular acceleration. (d) If the disk has an angular acceleration, the object has both a centripetal acceleration and a tangential acceleration. (e) The object always has a centripetal acceleration except when the angular speed is zero.arrow_forwardAn automobile engine can produce 200Nm of torque. Calculate the angular acceleration produced if 95.0 of this torque is applied to the drive shaft, axle, and rear wheels of a car, given the following information. The car is suspended so that the wheels can turn freely. Each wheel acts like a 15.0-kg disk that has a 0.180-m radius. The walls of each tire act like a 2.00-kg annular ring that has inside radius of 0.180 m and outside radius of 0.320 m. The tread of each tire acts like a 10.0-kg hoop of radius 0.330 m. The 14.0-kg axle acts like a rod that has a 2.00-cm radius. The 30.0-kg drive shaft acts like a rod that has a 3.20-cm radius.arrow_forwardTwo ponies of equal mass are initially at diametrically opposite points on the rim of a large horizontal turntable that is turning freely on a frictionless. vertical axle through its center. The ponies simultaneously start walking toward each other across the turntable, (i) As they walk, what happens to the angular speed of the turntable? (a) It increases, (b) h decreases, (c) It stays constant. (Consider the ponies-turntable system in this process and answer yes or no for the following questions. (ii) Is the mechanical energy of the system conserved? (iii) Is the momentum of the system conserved? (iv) Is the angular momentum of the system conserved?arrow_forward
- Consider the 12.0 kg motorcycle wheel shown in Figure 10.38. Assume it to be approximately an annular ring with an inner radius of 0.280 m and an outer radius of 0.330 m. The motorcycle is on its center stand, so that the wheel can spin freely. (a) If the drive chain exerts a force of 2200 N at a radius of 5.00 cm, what is the angular acceleration of the wheel? (b) What is the tangential acceleration of a point on the outer edge of the tire? (c) How long, starting from rest, does it take to reach an angular velocity of 80.0 rad/s? Figure 10.38 A motorcycle wheel has a moment of inertia approximatelyarrow_forwardA playground merry-go-round of radius R = 2.00 m has a moment of inertia I = 250 kg m2 and is rotating at 10.0 rev/min about a frictionless, vertical axle. Facing the axle, a 25.0-kg child hops onto the merry-go-round and manages to sit down on the edge. What is the new angular speed of the merry-go-round?arrow_forwardRepeat Example 10.15 in which the stick is free to have translational motion as well as rotational motion.arrow_forward
- A 60.0-kg woman stands at the rim of a horizontal turntable having a moment of inertia of 500 kg m2 and a radius of 2.00 m. The turntable is initially at rest and is free to rotate about a frictionless, vertical axle through its center. The woman then starts walking around the rim clock-wise (as viewed from above the system) at a constant speed of 1.50 m/s relative to Earth. (a) In what direction and with what angular speed does the turntable rotate? (b) How much work does the woman do to set herself and the turntable into motion?arrow_forwardUnreasonable Results An advertisement claims that an 800-kg car is aided by its 20.0-kg flywheel, which can accelerate the car from rest to a speed of 30.0 m/s. The flywheel is a disk with a 0.150-m radius. (a) Calculate the angular velocity the flywheel must have if 95.0% of its rotational energy is used to get the car up to speed. (b) What is unreasonable about the result? (c) Which premise is unreasonable or which premises are inconsistent?arrow_forwardBig Ben (Fig. P10.27, page 281), the Parliament tower clock in London, has hour and minute hands with lengths of 2.70 m and 4.50 m and masses of 60.0 kg and 100 kg, respectively. Calculate the total angular momentum of these hands about the center point. (You may model the hands as long, thin rods rotating about one end. Assume the hour and minute hands are rotating at a constant rate of one revolution per 12 hours and minutes, respectively.)arrow_forward
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning